Math, asked by llItzDishantll, 1 month ago

❏ Moderators
❏ Brainly Stars
❏ Maths Aryabhata
❏ Other best users

Prove that,
 \frac{ \cos4x +  \cos3x +  \cos2x}{ \sin4x +  \sin3x  +  \sin2x }  =  \cot3x
◆Only hand typed answers
◆No spams​

Answers

Answered by sethrollins13
286

Given :

  • \dfrac{\cos4x+\cos3x+\cos2x}{\sin4x+\sin3x+\sin2x}

To Prove :

  • \dfrac{\cos4x+\cos3x+\cos2x}{\sin4x+\sin3x+\sin2x }=\cot3x

Solution :

Using Identities :

  • cos x + cos y = 2cos x+y/2 cos x-y/2
  • sin x + sin y = 2sin x+y/2 cos x-y/2

\longmapsto\tt{\dfrac{2cos\dfrac{4x+2x}{2}\:cos\dfrac{4x-2x}{2}+cos\:3x}{2sin\dfrac{4x+2x}{2}\:cos\dfrac{4x-2x}{2}}}

\longmapsto\tt{\dfrac{2cos\dfrac{{\not{6}}x}{{\not{2}}}\:cos\dfrac{{\not{2}}x}{{\not{2}}}+cos\:3x}{2sin\dfrac{{\not{6x}}}{{\not{2}}}\:cos\dfrac{{\not{2}}x}{{\not{2}}}}}

\longmapsto\tt{\dfrac{2\:cos\:3x\:cosx+cos\:3x}{2\:sin\:3x\:cosx+sin\:3x}}

By Taking Common :

\longmapsto\tt{\dfrac{cos\:3x{\cancel{(2\:cosx+1)}}}{sin\:3x{\cancel{(2\:cosx+1)}}}}

\longmapsto\tt{\dfrac{cos\:3x}{sin\:3x}}

\longmapsto\tt\bf{cot\:3x}

Hence Proved!


mddilshad11ab: Perfect explaination ✔️
Answered by Anonymous
257

Answer:

Question :-

\mapsto \bf{Prove\: that\: :\: \dfrac{cos4x + cos3x + cos2x}{sin4x + sin3x + sin2x} =\: cos3x}\\

Solution :-

\bigstar\: \: \purple{\bold{L.H.S =\: \dfrac{cos4x + cos3x + cos2x}{sin4x + sin3x + sin2x}}}

\implies \sf \dfrac{(cos4x + cos2x) + cos3x}{(sin4x + sin2x) + sin3x}

As we know that :

\clubsuit\: \: \sf\bold{\pink{cos A + cos B =\: 2cos\bigg\lgroup \dfrac{A + B}{2}\bigg\rgroup cos\bigg\lgroup \dfrac{A - B}{2}\bigg\rgroup}}\\

\clubsuit\: \: \: \sf\bold{\pink{sin A + sin B =\: 2sin\bigg\lgroup \dfrac{A + B}{2}\bigg\rgroup cos\bigg\lgroup \dfrac{A - B}{2}\bigg\rgroup}}\\

Then, we can write as :

\implies \sf \dfrac{2cos\bigg\lgroup \dfrac{4x + 2x}{2}\bigg\rgroup cos\bigg\lgroup \dfrac{4x - 2x}{2}\bigg\rgroup + cos3x}{2sin\bigg\lgroup \dfrac{4x + 2x}{2}\bigg\rgroup cos\bigg\lgroup \dfrac{4x - 2x}{2}\bigg\rgroup + sin3x}\\

\implies \sf \dfrac{2\: cos\: 3x\: cos x\: + cos3x}{2\: sin\: 3x\: cos\: x\: + sin 3x}

\implies \sf \dfrac{cos\: 3x\cancel{(2\: cos\: x + 1)}}{sin\: 3x\cancel{(2\: cos\: x + 1)}}

\implies \sf \dfrac{cos\: 3x}{sin\: 3x}

As we know that :

\clubsuit \: \: \sf\bold{\pink{cot A =\: \dfrac{cos A}{Sin A}}}

\implies \sf\bold{\red{cot 3x}}

\\

Again,

\bigstar\: \: \sf\purple{\bold{R.H.S =\: cot\: 3x}}

\implies \sf\bold{\red{cot\: 3x}}

Hence,

\leadsto \sf\bold{L.H.S =\: R.H.S}

\large\green{\underline{{\boxed{\textbf{Hence\: Proved.}}}}}

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

EXTRA INFORMATION :-

Quotient Identities :

\clubsuit\: \: \sf\bold{\pink{tan A =\: \dfrac{sin A}{cos A}}}

\clubsuit\: \: \sf\bold{\pink{cot A =\: \dfrac{cos A}{sin A}}}

\\

Reciprocal Identities :

\clubsuit\: \: \sf\bold{\pink{cot A =\: \dfrac{1}{tan A}}}

\clubsuit\: \: \sf\bold{\pink{cosec A =\: \dfrac{1}{sin A}}}

\clubsuit\: \: \sf\bold{\pink{sec A =\: \dfrac{1}{cos A}}}

\clubsuit\: \: \sf\bold{\pink{sin A =\: \dfrac{1}{cosec A}}}

\clubsuit\: \: \sf\bold{\pink{cos A =\: \dfrac{1}{sec A}}}

\clubsuit\: \: \sf\bold{\pink{tan A =\: \dfrac{1}{cot A}}}

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃


mddilshad11ab: Perfect explaination ✔️
Similar questions