English, asked by Anonymous, 1 month ago

❏ Moderators
❏ Brainly Stars
❏ Maths Aryabhata
❏ Other best users

Prove that,
\frac{ \cos4x + \cos3x + \cos2x}{ \sin4x + \sin3x + \sin2x } =cot3x

◆Only hand typed answers
◆No spams​

Answers

Answered by Anonymous
257

Given:-

L.H.S-\frac{ \cos4x + \cos3x + \cos2x}{ \sin4x + \sin3x + \sin2x }

R.H.S-cot3x

To Prove:-

  • L.H.S=R.H.S

Solution:-

Solving L.H.S

\frac{ \cos4x + \cos3x + \cos2x}{ \sin4x + \sin3x + \sin2x }

 =  > \frac{( \cos4x  + \cos2x )+ \cos3x}{ (\sin4x  + \sin2x  )+ \sin3x}

we know that :

\sf \:  \cos(x)  +  \cos(y)  = 2 \cos( \frac{x + y}{2} )  \cos( \frac{x - y}{2} )

and

 \sf\sin(x)  +  \sin(y)  = 2 \sin( \frac{x + y}{2} )  \cos( \frac{x - y}{2} )

Now, we will use these formula to solving L.H.S

 =  >  \frac{2 \cos( \frac{4x + 2x}{2} ) \cos( \frac{4x - 2x}{2} ) +  \cos(3x)   }{2 \sin( \frac{4x + 2x}{2} ) \cos( \frac{4x - 2x}{2} )  +  \sin(3x)  }

 =  >  \frac{2 \cos( \frac{6x}{2} ) \cos( \frac{2x}{2} ) +  \cos(3x)   }{2 \sin( \frac{6x}{2} ) \cos( \frac{2x}{2} )  +  \sin(3x)  }

 =  >  \frac{2 \cos( 3x) \cos( x) +  \cos(3x)   }{2 \sin( 3x) \cos( x )  +  \sin(3x)  }

Now, taking cos3x common in numerator and taking sin3x common in denominator

 =  >  \frac{ \cos3x(2 \cos(x)  + 1) }{ \sin3x (2 \sin(x) + 1) }

 =  >  \frac{ \cos3x \times ( 1) }{ \sin3x \times  ( 1) }

we know that

\sf \frac{  \cos(x)  }{ \sin(x)  }  =  \cot(x)

So,

 =  >  \cot(3x)

as it equals to R.H.S

\sf\therefore \: L.H.S=R.H.S

Similar questions