Math, asked by llItzDishantll, 2 months ago

❏ Moderators
❏ Brainly Stars
❏ Maths Aryabhata
❏ Other best users

Find the value of below expression.

 \cos {}^{4}  \frac{\pi}{8}  +  \cos {}^{4}   \frac{3\pi}{8}  +  \cos {}^{4}  \frac{5\pi}{8}  +  \cos {}^{4}  \frac{7\pi}{8}
◆Only hand typed answers
◆No spams
◆All the best.​

Answers

Answered by Itzheartcracer
7

Given :-

\displaystyle{\cos^4 \dfrac{\pi}{8}+\cos^4\dfrac{3\pi}{8}+\cos^4\dfrac{5\pi}{8}+\cos^4\dfrac{7\pi}{8}}

Solution :-

5π/8 can be written as π - 3π/8 and 7π/8 can be written as π - π/8

\sf\displaystyle \cos^4\dfrac{\pi}{8}+\cos^4\dfrac{3\pi}{8}+\cos^4\bigg({\pi - \dfrac{3\pi}{8}}\bigg) + \cos^4\bigg(\pi-\dfrac{\pi}{8}\bigg)

\displaystyle\cos^4\dfrac{\pi}{8}+\cos^4\dfrac{3\pi}{8}+\bigg(-\cos\dfrac{3\pi}{8}\bigg)^4 + \bigg(-\cos\dfrac{\pi}{8}\bigg)^4

\displaystyle \cos^4\dfrac{\pi}{8}+\cos^4\dfrac{3\pi}{8}\bigg - \bigg(\cos\dfrac{3\pi}{8}\bigg)^4 - \bigg(\cos\dfrac{\pi}{8}^4\bigg)

\displaystyle 2\bigg\{\cos^4\dfrac{\pi}{8}+\cos^4\dfrac{3\pi}{8}\bigg\}

\displaystyle 2\bigg\{\cos^4\dfrac{\pi}{8}+\sin^4\dfrac{\pi}{8}\bigg\}

\displaystyle 2\bigg\{\bigg(\cos^2\dfrac{\pi}{8}+\sin^2\dfrac{\pi}{8}\bigg)^2 - 2\cos^2\dfrac{\pi}{8}\times \sin^2\dfrac{\pi}{8}\bigg\}

\displaystyle 2\bigg\{\bigg(\cos^2\dfrac{\pi}{8}+\sin^2\dfrac{\pi}{8}\bigg)^2 - \bigg(2\sin\dfrac{\pi}{8}\cos\dfrac{\pi}{8}\bigg)^2\bigg\}

\sf 2\bigg\{\bigg(cos^2\dfrac{\pi}{8}+\sin^2\dfrac{\pi}{8}\bigg)^2 - \bigg(sin\dfrac{\pi}{4}\bigg)^2\bigg\}

\sf 2\bigg\{(1)^2-\dfrac{1}{2}\times\bigg(\dfrac{1}{\sqrt{2}}\bigg)^2\bigg\}

\sf 2\bigg\{1 - \dfrac{1}{2}\times\dfrac{1}{2}\bigg\}

\sf 2\bigg\{1 - \dfrac{1}{4}\bigg\}

\sf 2\bigg\{\dfrac{4-1}{4}\bigg\}

\sf 2\times\dfrac{3}{4}

\sf\dfrac{3}{2}

Answered by Anonymous
85

Solution:

\cos {}^{4} \frac{\pi}{8} + \cos {}^{4} \frac{3\pi}{8} + \cos {}^{4} \frac{5\pi}{8} + \cos {}^{4} \frac{7\pi}{8}

 = cos {}^{4}  \frac{\pi}{8}  + cos {}^{4} (\pi - \frac{3\pi}{8} ) + cos {}^{4} (\pi -  \frac{\pi}{8} )

 = cos {}^{4}  \frac{\pi}{8}  + cos {}^{4}  \frac{3\pi}{8}  + cos {}^{4}  \frac{3\pi}{8}  + cos {}^{4}  \frac{\pi}{8}

 = 2[cos {}^{4}  \frac{\pi}{8}  +  cos {}^{4}  \frac{3\pi}{8} ]

 = 2[cos {}^{4}  \frac{\pi}{8}  + cos {}^{4} (  \frac{\pi}{2}  -  \frac{\pi}{8} )]

 = 2[cos {}^{4}  \frac{\pi}{8}  + cos {}^{4}  \frac{\pi}{8} ]

 = 2[(cos {}^{4}  \frac{\pi}{8}  + sin {}^{2}  \frac{\pi}{8 } ) {}^{2}  - 2cos {}^{2}  \frac{\pi}{8 }  \times  \frac{\pi}{8} ]

 = 2 - (2 - sin \:  \frac{\pi}{8}  \times cos \:  \frac{\pi}{8} ) {}^{2}

 = 2 - (sin \:  \frac{\pi}{8} ) {}^{2}

 =  2 - ( \frac{1}{ \sqrt{2} } ) {}^{2}

 = 2 -  \frac{1}{2}  =  \frac{3}{2}

\fbox\pink{Answer = 3/2}

Similar questions