Math, asked by MichWorldCutiestGirl, 5 days ago

❐Moderators
❐Brainly Stars
❐Other best users


Draw the graph representing the equations x - y = 1 and 2x + 3y = 12 on the same

graph paper. Find the area of the triangles formed by these lines, the X-axis and

the Y-axis​


Don't dare for spam !​

Answers

Answered by Ʀíɗɗℓεʀ
138

Given : Equation (1) is x - y = 1 and Equation (2) is 2x + 3y = 12.

To Find : Find the area of the triangles ?

_______________

Solution : Let the area of the triangles be x sq. units.

~

  • {\bf{\pmb{x~-~y~=~1}~~~~~~~~~~~~~~~~~~~~\bigg\lgroup{1}\bigg\rgroup}}

\qquad{\sf:\implies{x~=~y}}

~

  • Considering some points for plotting.

~

We get,

  • If x = 0 , y = 0
  • If x = 1 , y = 1
  • If x = 3 , y = 3

~

Therefore,

  • The required points for plotting,
  • Eqⁿ (1) ; line are,

\qquad:\implies{\underline{\boxed{\frak{\purple{\pmb{(0,0)~,~(1,1)~and~(3,3)}}}}}}

~

  • {\bf{\pmb{2x~+~3y ~=~12}~~~~~~~~~~~~~\bigg\lgroup{2}\bigg\rgroup}}

\qquad{\sf:\implies{2x~=~12~-~3y}}

\qquad{\sf:\implies{x~=~\dfrac{(12~-~3)}{2}}}

~

  • Finding the required points for plotting,

~

We get,

  • If y = 0 , then x is :

\qquad{\sf:\implies{x~=~\dfrac{(\cancel{12}~-~0)}{\cancel{2}}~=~\underline{\pmb{6}}}}

  • If y = 1 , then x is :

\qquad{\sf:\implies{x~=~\dfrac{(12~-~3[1])}{2}}}

\qquad{\sf:\implies{x~=~\dfrac{(12~-~3)}{2}~=~\underline{\pmb{4.5}}}}

  • If y = 4 , then x is :

\qquad{\sf:\implies{x~=~\dfrac{(12~-~3[4])}{2}}}

\qquad{\sf:\implies{x~=~\dfrac{(\cancel{12}~-~\cancel{12})}{2}}}

\qquad{\sf:\implies{\dfrac{x~=~0}{2~=~0}}}

~

Therefore,

  • The required points for plotting,
  • Eq (2) ; line are,

\qquad:\implies{\underline{\boxed{\frak{\purple{\pmb{(6,0)~,~(4.5,1)~and~(0,4)}}}}}}

~

  • [Required to the attachment for the graph.]

~

Now, we are required to find the area of the triangle. (Yellow Part)

~

\dag~\underline{\frak{\pmb{As ~we ~know ~that,}}}

  • \boxed{\frak{\pmb{Area~of~ triangle~=~0.5~×~Base~×~Height}}}

~

From, the diagram we can see that the top vertex is having a coordinate (2.4 , 2.4). Therefore, the distance of top vertex from x-axis is 2.4 units, Which is the height of the triangle.

  • Similarly, the base of the triangle is from (0,0) to (6,0). Hence, the base length is 6 units.

~

Therefore,

\qquad{\sf:\implies{Area~of~triangle~=~0.5~×~6~×~2.4}}

\qquad:\implies{\underline{\boxed{\frak{\pink{\pmb{7.2~sq.~units.}}}}}}

~

Hence,

  • The area of the triangle is 7.2 sq. units.
Attachments:
Similar questions