♤ Moderators
☆ Brainly Stars
♡ Other Best Users
Question >>>>
Find The Maximum Value of the Function
f(A) = 12sinA + 12
$ No Spam
$No Spam
$No Spam
Answers
Answered by
130
-------------------------------
▪ Given :-
- f(A) = 5cosA + 12sinA + 12.
-------------------------------
▪ To Find :-
- Maximum Value of f(A).
-------------------------------
▪ Concept To Mind :-
- The maximum and minimum value of any function at the the point where First Derivative is Zero.
- For Maxima the sign of second derivative should be negative.
-------------------------------
▪ Solution :-
》We Have ,
Now,
Now ,
So ,
-------------------------------
amitkumar44481:
Great :-)
Answered by
166
f(A)=5cosA+12sinA+12
f′(A)=−5sinA+12cosA
f′′(A)=−5cosA−12sinA
For the minimum and maximum value
f′(A)=0
⟹ −5sinA+12cosA=0⟹5sinA=12cosA
⟹tanA=12/5
⟹A=arc tan12/5 = 67.38° and 247.38°
WhenA=67.38∘f′′(A)<0
∴f(A) is maximum for A=67.38∘
f(A)maximum=5cos67.38∘+12sin67.38∘+12=25
Similar questions
English,
27 days ago
English,
27 days ago
Math,
27 days ago
Chemistry,
1 month ago
Accountancy,
1 month ago
India Languages,
9 months ago
Math,
9 months ago