Math, asked by shivasinghmohan629, 1 month ago

Moderators ✩Brainly Stars Other Best Users Question >>>> Find The Derivative of x ¹/x $ No Spam $No Spam $No Spam​

Answers

Answered by llBtwitsPrannll
28

Question :

  • Find The Derivative of x ¹/x

\:\:\:\:\:\:\:\:\:\:\:\:\:\:━━━━━━━━━━━━━━━━━━

❍ When dealing with a function raised to the power of function, lagorithmic differentiation becomes necessary

Let,

 \begin{gathered} \bold{y =  {x}^{ \frac{1}{x} }}  \end{gathered}

Then,

 \sf{ \qquad :  \implies \quad \: y =  ln( {x}^{ \frac{1}{x} } ) }

 \bold{ \underline{ \: {Recalling \:  that \:  ln(  {x}^{a} )  = a \:  ln \: x : }}}

 \sf{ \qquad :  \implies \quad \:  ln \: y \:  =  \:  \frac{1}{x}  ln \: x}

\sf{ \qquad :  \implies \quad \:  ln \: y \:  =  \: \large  \frac{ ln \: x }{x} }

❍ Now, Differentiate both the side with respect to x, meaning that the left side will be implicitly differentiated :

 \begin{gathered} \sf{ \frac{1}{y} \: .  \: \frac{dy}{dx}   =  \frac{1 -  ln \: x }{ {x}^{2} }}  \end{gathered}

 \bold{ \underline{ \: {solve \: for \:  \frac{dy}{dx} : }}}

 \begin{gathered} \:  \sf \:  \frac{dy}{dx} = y  \:  ({ \frac{1 -  ln \: x }{ {x}^{2} })} \end{gathered}

 \bold{ \underline{write \: everything \: in \: terms \: of \: x : }}

 \begin{gathered} \sf \:  \frac{dy}{dx}  =  {x}^{ \frac{1}{x} } \:  \:(   \frac{1 -  ln \: x }{ {x}^{2}  } ) \end{gathered}

Similar questions