Math, asked by MysteriesGirl, 6 hours ago

❐Moderators
❐Brainly Stars
❐Other best users

Question In Attachment.


Give Proper Answer.​

Attachments:

Answers

Answered by tyrbylent
1

Answer:

Step-by-step explanation:

Attachments:
Answered by MysticSohamS
1

Answer:

your proof is as follows

pls mark it as brainliest

Step-by-step explanation:

to \: prove \: that :  \\ A(∆ABC) =  \frac{1}{4} b .\sqrt{4a {}^{2}  - b {}^{2} }  \\  \\ for \: ∆ABC \\ AB = AC = a \\ BC = b \\  \\ thus \: then \\ s(∆ABC) =  \frac{a + b + c}{2}  \\  \\  s=  \frac{2a + b}{2}  \\  \\by \: herons \: formula \\ A(∆ABC)  =  \sqrt{s(s - a)(s - b)(s - c)}  \\  \\  =  \sqrt{( \frac{2a + b}{2}) ( \frac{ 2a + b}{2}  - a)( \frac{2a + b}{2} - b)( \frac{2a + b}{2}   - c}  \\  \\  =  \sqrt{( \frac{2a + b}{2})( \frac{2a - 2a + b}{2} )( \frac{2a  + b - 2b}{2})( \frac{2a + b - 2a}{2}  ) }  \\  \\  =   \sqrt{ (\frac{2a + b}{2} )( \frac{2a - b}{2}) \times  \frac{b {}^{2} }{4}  }  \\  \\  =  \sqrt{ (\frac{4a {}^{2}  - b {}^{2} }{16}) .b {}^{2}   }  \\  \\  =  \frac{b}{4}  \sqrt{ 4a {}^{2}  - b {}^{2}  }  \\  \\  =  \frac{1}{4}  \sqrt{4a {}^{2} - b {}^{2}  }  \\  \\ thus \: proved

Similar questions