Math, asked by MichWorldCutiestGirl, 5 hours ago

Moderators
Brainly Stars
Other best users


Question:-
 \pink{\displaystyle \sf \frac{1}{1 + log_{a}bc} + \frac{1}{ 1 + \log_{b}ac} + \frac{1}{1 + log_{c}ab}1+loga​bc1​+1+logb​ac1​+1+logc​ab1​}\  \textless \ br /\  \textgreater \


Don't dare for Spam!​

Answers

Answered by mathdude500
9

Appropriate Question

Evaluate the following :

\rm :\longmapsto\:\displaystyle \sf \frac{1}{1 + log_{a}bc} + \frac{1}{ 1 + \log_{b}ac} + \frac{1}{1 + log_{c}ab}

 \red{\large\underline{\sf{Solution-}}}

Given Logarithmic expression is

\rm :\longmapsto\:\displaystyle \sf \frac{1}{1 + log_{a}bc} + \frac{1}{ 1 + \log_{b}ac} + \frac{1}{1 + log_{c}ab}

We know,

 \purple{\rm :\longmapsto\:\boxed{\tt{  \:  \:  \:  log_{x}(x)  = 1 \:  \:  \: }}}

So, using this identity, we get

\rm \:  =  \: \displaystyle \sf \frac{1}{ log_{a}(a)  + log_{a}bc} + \frac{1}{  log_{b}(b)  + \log_{b}ac} + \frac{1}{ log_{c}(c)  + log_{c}ab}

We know that

 \green{\rm :\longmapsto\:\boxed{\tt{   log_{a}(x)  +  log_{a}(y) =  log_{a}(xy) \:  \: }}}

So, using this identity we get

\rm \:  =  \: \dfrac{1}{ log_{a}(abc) }  + \dfrac{1}{ log_{b}(abc) }  + \dfrac{1}{ log_{c}(abc) }

can be rewritten as

\rm \:  =  \:  log_{abc}(a)  +  log_{abc}(b)  +  log_{abc}(c)

\rm \:  =  \:  log_{abc}(abc)

\rm \:  =  \: 1

Hence,

 \purple{\rm\implies \:\boxed{\tt{\displaystyle \sf \frac{1}{1 + log_{a}bc} + \frac{1}{ 1 + \log_{b}ac} + \frac{1}{1 + log_{c}ab} = 1 }}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

ADDITIONAL INFORMATION

\boxed{\tt{  log_{a}( {a}^{x} ) = x}}

\boxed{\tt{  log_{ {a}^{y} }( {a}^{x} ) =  \frac{x}{y} }}

\boxed{\tt{  log_{ {a}^{y} }( {b}^{x} ) =  \frac{x}{y}  log_{a}(b) }}

\boxed{\tt{  {a}^{ log_{a}(x) }  = x}}

\boxed{\tt{  {a}^{y log_{a}(x) }  =  {x}^{y} }}

\boxed{\tt{  {e}^{ log_{e}(x) }  = x}}

\boxed{\tt{  {e}^{y log_{e}(x) }  =  {x}^{y} }}

Similar questions