Math, asked by guptaananya2005, 1 month ago

Moderators

Stars and best users or genius, please solve, I it's urgent.

Spammers please far away.

Question : Solve for x and y


logx +  {logx}^{ \frac{1}{2} } +  {logx}^{ \frac{1}{4} } +  -  -  -  -  = y

and

\sf \dfrac{1 + 3 + 5 +  -  - + (2y - 1)}{4 + 7 + 10 +  -  -+ (3y + 1)} =  \dfrac{20}{7logx}

Answers

Answered by katrina27
1

Step-by-step explanation:

y=10 and x=10^5

I got these ans yr

Answered by mathdude500
9

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\:logx + log {\bigg(x\bigg) }^{\dfrac{1}{2} } + log {\bigg(x\bigg) }^{\dfrac{1}{4} } +  -  -  -  -  = y

We know,

\green{ \boxed{ \sf{ \: log(x) \:   +  \:  log(y)   \:  = \:  log(xy)  \: }}}

So, using this

\rm :\longmapsto\:log\bigg[x {\bigg(x\bigg) }^{\dfrac{1}{2} } {\bigg(x\bigg) }^{\dfrac{1}{4} }  -  -  -  - \bigg] = y

\rm :\longmapsto\:log {\bigg(x \bigg) }^{1 + \dfrac{1}{2}  +  \dfrac{1}{4}  +  -  -  -  - } = y

We know, Sum of infinite GP series is given by

\green{ \boxed{ \sf{ \:S_ \infty  \:  =  \:  \frac{a}{1 - r}  \: }}}

So, using this, we get

\rm :\longmapsto\:log {\bigg(x \bigg) }^{ \dfrac{1}{1 - \frac{1}{2} } } = y

\rm :\longmapsto\:log {\bigg(x \bigg) }^{ \dfrac{1}{ \frac{1}{2} } } = y

\rm :\longmapsto\:log {\bigg(x \bigg) }^{ 2} = y

\rm :\longmapsto\:2 \: logx \:  =  \: y \:  -  -  - (1)

Also, given that

\rm :\longmapsto\:\dfrac{1 + 3 + 5 + - - + (2y - 1)}{4 + 7 + 10 + - -+ (3y + 1)} = \dfrac{20}{7logx}

can be rewritten as,

\rm :\longmapsto\:\dfrac{\displaystyle\sum_{n=1}^y \: (2n - 1)}{\displaystyle\sum_{n=1}^y \: (3n + 1)}  = \dfrac{40}{7 \times 2logx}

\rm :\longmapsto\:\dfrac{2\displaystyle\sum_{y=1}^n \: y  - \displaystyle\sum_{y=1}^n1}{3\displaystyle\sum_{y=1}^n \: y + \displaystyle\sum_{y=1}^n1}  = \dfrac{40}{7y}

\red{\bigg \{ \because \: 2logx = y\bigg \}}

We know that,

\green{ \boxed{ \sf{ \:\displaystyle\sum_{y=1}^n \: y =  \frac{n(n + 1)}{2}}}} \:  \: and \:  \: \green{ \boxed{ \sf{ \:\displaystyle\sum_{y=1}^n \: 1 \:  =  \: n}}}

So, using this, we get

\rm :\longmapsto\:\dfrac{2\dfrac{y(y + 1)}{2}  - y}{3\dfrac{y(y + 1)}{2}  + y} = \dfrac{40}{7y}

\rm :\longmapsto\:\dfrac{ {2y}^{2}  + 2y - 2y}{ {3y}^{2}  + 3y + 2y} = \dfrac{40}{7y}

\rm :\longmapsto\:\dfrac{ {2y}^{2}}{ {3y}^{2}  + 5y} = \dfrac{40}{7y}

\rm :\longmapsto\:\dfrac{ {2y}^{2}}{y( {3y}  + 5)} = \dfrac{40}{7y}

\rm :\longmapsto\:\dfrac{ {2y}}{{3y}  + 5} = \dfrac{40}{7y}

\rm :\longmapsto\:\dfrac{ {y}}{{3y}  + 5} = \dfrac{20}{7y}

\rm :\longmapsto\: {7y}^{2} = 60y + 100

\rm :\longmapsto\: {7y}^{2} - 60y  - 100 = 0

\rm :\longmapsto\: {7y}^{2} - 70y + 10y  - 100 = 0

\rm :\longmapsto\:(y - 10)(7y + 10) = 0

\bf\implies \:y = 10 \:  \:  \: or \:  \:  \:  \: y =  -  \: \dfrac{10}{7}

So,

\bf\implies \:2logx = 10 \:  \:  \: or \:  \:  \:  \: 2logx =  -  \: \dfrac{10}{7}

\bf\implies \:logx = 5 \:  \:  \: or \:  \:  \:  \: logx =  -  \: \dfrac{5}{7}

We know,

\green{ \boxed{ \sf{ \: log_{a}(b) = x \:  \implies \: b \:  =  \:  {a}^{x}}}}

So, using this, we get

\bf\implies \:x =  {10}^{5}  \:  \:  \: or \:  \:  \: x =  {\bigg(10\bigg) }^{ - \dfrac{5}{7} }

Similar questions