Math, asked by Anonymous, 7 days ago

★Moderators
★Stars
★Best Users

A toy is made in the form of hemisphere surmounted by a right cone whose circular base is joined with the plane surface of the hemisphere. The radius of the base of the cone is 7cm. and it's volume is 3/2 of the hemisphere. calculate the height of the cone and the surface area of the toy.
\bf\mathbb{NOTE  :} \\
- No spam!
- No copy paste!​

Answers

Answered by Anonymous
34

Step-by-step explanation:

 \sf \: Radius \:  of \:  cone, \: r=7cm \\  \sf \: Volume  \: of \:  cone = \frac{3}{2}  \\  \sf \: volume \: of \: hemisphere \:  \\  \sf =  \frac{1}{3} \pi \:  {r}^{2} h =  \frac{3}{2}  \times  \frac{2}{3} \pi \:  {r}^{3} \\\sf⇒h=3r=3×7=21cm

 \sf \purple{Surface \:  area \:  of  \: the  \: toy  \: = curved \: } \\  \sf \blue{Surface \:  area \:  of  \: the cone  \: +  \: curved} \\  \sf \pink{Surface  \: area  \: of  \: the \:  hemisphere.} \\  \sf \red{Radius \:  of  \: cone, \: r \: =7cm} \\  \sf \green{Height \:  of \:  cone, \: h \: =21cm}

 \sf \: Slant \:  height \:  =l \: = \sqrt{ {r}^{2}  +  {h}^{2} }  \\  \sf \:  =  \sqrt{ {7}^{2}  +  {21}^{2}  }  =  \sqrt{49 + 441}  = 490 = 22.135 \\  \sf \: Curved  \: surface  \: area =πrl \\  \sf \:  =  \frac{22}{7}  \times 7 \times 22.135 = 486.99 {cm}^{2}  \\  \sf \:  Curved \:  surface \:  area \:  of \:  the \:  toy  \:  \\  \sf=486.99 \: +308=794.99 {cm}^{2}

Similar questions