Math, asked by dhananjaypandey2697, 10 months ago

# mods challenge

need a verified ✔️answer

Attachments:

Answers

Answered by pathakshreya456
3

Answer:

LHS = √(1 + sin∅)/√(1 - sin∅)

= √(1 + sin∅) × √(1 + sin∅)/√(1 -sin∅)×√(1 +sin∅)

= √(1 + sin∅)²/√(1 -sin²∅)

= (1 + sin∅)/√cos²∅

= (1 + sin∅)/cos∅

= 1/cos∅ + sin∅/cos∅

= sec∅ + tan∅ = RHS

Answered by Anonymous
9

\large\red{\underline{{\boxed{\textbf{to \: prove: }}}}} \\  \\  \huge : \implies \:   \huge \:  \sqrt{ \frac{1 +  \sin \:  A }{1 -  \ \sin  \: A} }  =  \sec \:  A\:  +  \:  \tan \:  A</p><p></p><p>

\large\red{\underline{{\boxed{\textbf{solution: }}}}} \:  \\  \\  LHS =  \huge \:  \sqrt{ \frac{1 +  \sin \: A}{1 -  \sin \: A} }  \\  \\  =  \:  \sqrt{ \frac{(1 +  \sin \: A)(1 +  \sin \: A) }{(1  -   \sin \: A)(1 +  \sin \: A) } }  \\  \\  =  \sqrt{ \frac{(1 +  \sin \: A)  ^{2} }{1 -  \sin ^{2}  } }  \\  \\  =  \frac{(1 +  \sin \: A)}{ \sqrt{ \cos^{2} \: A } }  \\  \\  =  \frac{1 +  \sin \: A }{ \cos \: A}  \\  \\  =   \frac{1}{ \cos \: A }  \:  +  \:  \frac{ \sin \: A}{ \cos \: A}  \\  \\  =   \sec \: A\:  +  \:  \tan \: A \:  = RHS \\  \\ </p><p>

LHS = RHS

HENCE VERIFIED ✔

Similar questions