Physics, asked by Arceus02, 9 months ago

#MODS challenge
Physics 2019 problem​

Attachments:

Answers

Answered by BrainlyConqueror0901
17

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{\frac{ v_{2} -  v_{1} }{\Delta t_{1} + \Delta t_{2}}  = \frac{v_{3}  -  v_{2}}{\Delta t_{3} + \Delta t_{2}}}}}\\

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt: \implies Uniform \: acceleration = a \\  \\  \tt: \implies Successive \: time \: intervals =  \Delta t_{1},\Delta t_{2} \: and \: \Delta t_{3} \\  \\ \tt: \implies Sucessive \: average \: velocity =  v_{1}, v_{2} \: and \:   v_{3} \\  \\ \red{\underline \bold{To \: Find :}}  \\  \tt:  \implies Correct \: relation =?

• According to given question :

 \text{let \: initial \: velocity \: be \: u} \\  \\  \bold{As \: we \: know \: that} \\ \tt :   \implies v = u +  at \\  \\  \tt:  \implies  v \degree = u + a  {\Delta t_{1} }  -  -  -  -  - (1) \\  \\  \bold{Similarly : }  \\   \\   \tt:  \implies  v \degree \degree = u + a(\Delta t_{1} + \Delta t_{2}) -  -  -  -  - (2) \\  \\  \bold{Again : } \\  \\ \tt:  \implies v \degree \degree \degree = u + a(\Delta t_{1} +\Delta t_{2} + \Delta t_{3})  -  -  -  -  - (3) \\  \\  \bold{For \: first \: sucessive \: average} \\ \\ \tt:  \implies  v_{1} =  \frac{u + v \degree}{2}  \\  \\ \tt:  \implies  v_{1} = \frac{u + u +a  {\Delta t_{1} } }{2}  \\  \\ \tt:  \implies  v_{1} =u +  \frac{a  {\Delta t_{1} }}{2}  -  -  -  -  - (4) \\  \\  \bold{Similarly \: for \: second \: sucessive}

 \tt:  \implies  v_{2} =  \frac{v \degree +  v\degree \degree}{2}  \\  \\ \tt:  \implies  v_{2} = \frac{ u + a  {\Delta t_{1} } +u + a  ({\Delta t_{1}  + \Delta t_{2})}}{2}  \\  \\ \tt:  \implies  v_{2} =u + a  {\Delta t_{1} } +  \frac{a\Delta t_{2}}{2}  -  -  -  -  - (5) \\  \\  \bold{Similary : } \\  \\ \tt:  \implies  v_{3} = \frac{v \degree\degree +v \degree\degree \degree}{2}  \\  \\ \tt:  \implies  v_{3} = \frac{u + a  (\Delta t_{1}  + \Delta t_{2}) +u + a  (\Delta t_{1}  + \Delta t_{2} + \Delta t_{3})}{2}  \\  \\ \tt:  \implies  v_{3} = u + a\Delta t_{1}  + a\Delta t_{2}  +  \frac{a\Delta t_{3} }{2}  -  -  -  -  - (6) \\  \\  \text{Subtracting \: (4) \: from \: (5)} \\  \\  \tt:  \implies  v_{2} -  v_{1} =  u + a  {\Delta t_{1} } +  \frac{a\Delta t_{2}}{2} - u -  \frac{a  {\Delta t_{1} }}{2}

 \tt:  \implies  v_{2} -  v_{1} =  \frac{a(\Delta t_{1} + \Delta t_{2})}{2}  -  -  -  -  - (7) \\  \\  \text{Subtracting \: (5) \: from \: (6)} \\  \tt:  \implies  v_{3} -  v_{2} =  u + a  {\Delta t_{1} } +a\Delta t_{2}  +  \frac{a\Delta t_{3}}{2} - u -  a\Delta t_{1} - \frac{a  {\Delta t_{2} }}{2} \\  \\ \tt:  \implies  v_{2} -  v_{1} =  \frac{a(\Delta t_{2} + \Delta t_{3})}{2}  -  -  -  -  - (8) \\  \\  \text{Dividing \: (7) \:upon \: (8)} \\  \\  \tt:  \implies  \frac{ v_{2} -  v_{1} }{ v_{3}  -  v_{2}}  =  \frac{ \frac{a(\Delta t_{1} + \Delta t_{2})}{2} }{\frac{a(\Delta t_{2} + \Delta t_{3})}{2}}  \\  \\ \tt:  \implies  \frac{ v_{2} -  v_{1} }{ v_{3}  -  v_{2}}  =\frac{a(\Delta t_{1} + \Delta t_{2})}{2} \times \frac{2}{a(\Delta t_{2} + \Delta t_{3})} \\  \\  \tt:  \implies  \frac{ v_{2} -  v_{1} }{ v_{3}  -  v_{2}}  = \frac{(\Delta t_{1} + \Delta t_{2})}{(\Delta t_{2} + \Delta t_{3})} \\\\ \green{\tt:\implies \frac{ v_{2} -  v_{1} }{\Delta t_{1} + \Delta t_{2}}  = \frac{v_{3}  -  v_{2}}{\Delta t_{3} + \Delta t_{2}}}


Anonymous: Amazing!
BrainlyConqueror0901: answer ya main xD ?
Similar questions