modulus and argument of -16/1+i√13 in complex number
Answers
Answer:
z=−1−i 3
Let rcosθ=−1andrsinθ=−3
On squaring and adding, we obtain(rcosθ) 2. (rsinθ) 2 =(−1)
2+(− 3 ) 2⇒r 2
(cos 2 θ+sin 2 θ)=1+3⇒r 2 =4[cos
2θ+sin 2 θ=1]⇒r= 4
=2 (Conventionally,r>0 )
∴ Modulus of z i.e ∣z∣=2
∴2cosθ=−1and2sinθ=−
3
Since both the values of sinθ and cosθ are negative and sinθ and cosθ are negative in III quadrant,
Argument =−(π−
3
π
)=
3
−2π
Thus, the modules and argument of the complex number −1−
3i are 2 and 3 −2π respectively...
Thnx ( ̄ヘ ̄)
Answer:
z=−1−i 3
Let rcosθ=−1andrsinθ=− 3
On squaring and adding, we obtain
(rcosθ)
2 +(rsinθ) 2=(−1)
2 +(− 3 ) 2⇒r
2 (cos 2 θ+sin 2θ)=1+3⇒r
2=4[cos 2 θ+sin 2 θ=1]⇒r
= 4
=2 (Conventionally,r>0 )
∴ Modulus of z i.e ∣z∣=2
∴2cosθ=−1and2sinθ=−
3
Since both the values of sinθ and cosθ are negative and sinθ and cosθ are negative in III quadrant,
Argument =−(π−
3
π
)=
3
−2π
Thus, the modules and argument of the complex number −1−
3i are 2 and 3 −2π respectively.