Math, asked by adityanath11, 6 months ago

Modulus of (1-2i)/(1+2i) is-

Answers

Answered by Nereida
10

Answer:

Given : (1-2i)/(1+2i)

⇒ (1-2i)/(1+2i) × (1-2i)/(1-2i)

⇒ (1-2i-2i+4i²)/(1-2i+2i-4i²)

⇒ (1-4i-4)/(1+4)

⇒ (-3-4i)/(5)

⇒ -3/5 - 4/5 i

Modulus : √(x² + y²)

⇒ √(-3/5)² + (-4/5)²

⇒ √9/25+16/25

⇒ √(9+16)/25

⇒ √25/25

⇒ √1

⇒ 1

Hence, Modulus of (1-2i)/(1+2i) is : 1.

IMPORTANT :

  • Negative numbers do not have square roots.
  • i = √-1
  • i² = -1
  • z = a + ib
  • a and b are real.
  • a is the real part.
  • ib is the imaginary part.
Answered by Anonymous
3

Given ,

The complex number is (1-2i)/(1+2i)

Multiplying numerator and denominator by 1 - 2i , we get

 \tt \implies \frac{(1 - 2i)(1  - 2i)}{(1 + 2i)(1 - 2i)}

 \tt \implies  \frac{ {(1 - 2i)}^{2} }{ {(1)}^{2}  -  {(2i)}^{2} }

 \tt \implies  \frac{ {(1)}^{2} +  {(2i)}^{2}  - 2(1)(2i) }{1 - 4 (- 1)}

 \tt \implies \frac{1 + 4( - 1) - 4i}{5}

 \tt \implies  \frac{ - 3 - 4i}{5}

 \tt \implies - \frac{ 3}{5}  -  \frac{4i}{5}

Therefore , the complex number in standard form is -3/5 - 4i/5

On comparing with a + ib , we get

a = -3/5

b = -4/5

Now , the distance between the origin and (a , b) is called modulus of complex number ( z = a + ib)

Mathematically ,

 \boxed{ \tt{ |z|  = r =  \sqrt{ {(a)}^{2}  +  {(b)}^{2} }} }

Thus ,

 \tt \implies |z|  =  \sqrt{ {( -  \frac{3}{5} )}^{2}  +  {( -  \frac{4}{5} )}^{2} }

 \tt \implies |z|  =  \sqrt{  \frac{9}{25}   +   \frac{16}{25} }

 \tt \implies |z|  =    \sqrt{ \frac{9 + 16}{25} }

 \tt \implies |z|  =   \sqrt{ \frac{25}{25} }

  \tt \implies|z|  =   \sqrt{1}

 \tt \implies |z|  = 1

Therefore , the modulus of given complex number 1

_______________ Keep Smiling

Similar questions