Modulus of (1-2i)/(1+2i) is-
Answers
Answered by
10
Answer:
Given : (1-2i)/(1+2i)
⇒ (1-2i)/(1+2i) × (1-2i)/(1-2i)
⇒ (1-2i-2i+4i²)/(1-2i+2i-4i²)
⇒ (1-4i-4)/(1+4)
⇒ (-3-4i)/(5)
⇒ -3/5 - 4/5 i
Modulus : √(x² + y²)
⇒ √(-3/5)² + (-4/5)²
⇒ √9/25+16/25
⇒ √(9+16)/25
⇒ √25/25
⇒ √1
⇒ 1
Hence, Modulus of (1-2i)/(1+2i) is : 1.
IMPORTANT :
- Negative numbers do not have square roots.
- i = √-1
- i² = -1
- z = a + ib
- a and b are real.
- a is the real part.
- ib is the imaginary part.
Answered by
3
Given ,
The complex number is (1-2i)/(1+2i)
Multiplying numerator and denominator by 1 - 2i , we get
Therefore , the complex number in standard form is -3/5 - 4i/5
On comparing with a + ib , we get
a = -3/5
b = -4/5
Now , the distance between the origin and (a , b) is called modulus of complex number ( z = a + ib)
Mathematically ,
Thus ,
Therefore , the modulus of given complex number 1
_______________ Keep Smiling ☺
Similar questions