Physics, asked by ravi20044, 1 year ago

Modulus of Vector A equals to modulus of vector B and the value of modulus Vector A and modulus of Vector B is 'a' then find out the resultant of the given vectors.​

Answers

Answered by BrainIyMSDhoni
62

Answer:

R = 2a \cos(  \frac{ \theta}{R} )

Explanation:

Given

| \vec{A}| = a \\ | \vec{B}| = a

We have to find

Resultant Vector = ???

R =  \sqrt{ {a}^{2}  +  {b}^{2}  + 2ab \cos \theta } \\   =  > R =   \sqrt{ {a}^{2} +  {a}^{2} + 2 \times a \times a \cos \theta }  \\  =  > R =  \sqrt{ {2a}^{2} +  {2a}^{2}  cos \theta}  \\  =  > R =  \sqrt{ {2a}^{2}(1 +  \cos\theta ) }  \\  =  > R =  \sqrt{ {2a}^{2}.2( {\cos \frac{ \theta}{2}})^{2}   } \\  =  > R =  \sqrt{4 {a}^{2}.  {(\cos \frac{ \theta}{2})}^{2}    }

 =  >  \boxed{R = 2a \cos(  \frac{ \theta}{R} ) }

Used identity in the solution

 \boxed{ \cos 2 \theta = 2 { \cos }^{2}  \theta - 1}

Answered by Anonymous
34

Answer:-

 \mathsf{R = 2aCos\dfrac{\theta}{2}}

Given :-

 |\vec{A}| = |\vec{B}|  = a

To find :-

The resultant of the given vectors.

Solution:-

The formula of resultant of two vector is given by :-

 {R = \sqrt{|\vec{A}|^2+ |\vec{B}|^2 + 2 |\vec{A}| |\vec{B}|Cos \theta}}

  • put the magnitude of the vectors.

 \mathsf{R = \sqrt{a^2 + a^2 + 2 a\times a Cos \theta }}

 \mathsf{R = \sqrt{2a^2 + 2a^2Cos \theta }}

  • Take 2a² as common.

 \mathsf{R = \sqrt{2a^2 (1+Cos\theta)}}

 \mathsf{R = a \sqrt{2(1+Cos\theta)}}

 \mathsf{R = a \sqrt{2(2Cos^2\dfrac{ \theta}{2}})}

 \mathsf{R = a \sqrt{4 Cos^2 \dfrac{\theta}{2}}}

\mathsf{ R = a \times 2 Cos \dfrac{\theta}{2}}

 \mathsf{R = 2aCos\dfrac{\theta}{2}}

hence,

The magnitude of resultant is

 \mathsf{2aCos\dfrac{\theta}{2}}

  • By using Sub multiple formula

\huge { \boxed{Cos \theta + 1 = 2Cos^2 \dfrac{\theta}{2}}}

Similar questions