Math, asked by itzsehaj, 13 hours ago

Mohan deposited Rs.100 in the bank. Recurring deposit account opened for 5 years per month. If the rate of interest is 5% per annum, what amount will he get after five years?
spam answer will be reported on the spot

Answers

Answered by mathdude500
31

\large\underline{\sf{Solution-}}

Given that,

Amounts deposited in bank every month, P = Rs 100

Rate of interest, r = 5 % per annum

Time period = 5 years

So,

Number of instâllments, n = 12 × 5 = 60

We know,

Maturity Value (MV) received on a certain sum of money of Rs P deposited every month at the rate of r % per annum for n months is given by

 \bold{{\boxed{\text{MV} = \text{nP} + \text{P} \times \dfrac{ \text{n(n + 1)}}{24} \times \dfrac{ \text{r}}{100} }}} \\

So, on substituting the values of n, P and r, we get

\rm \: \text{MV} = {60 \times 100} + 100 \times \dfrac{ 60(60 + 1)}{24} \times \dfrac{{5}}{100}\\

\rm \: \text{MV} = 6000 + \dfrac{ 5(60 + 1)}{2} \times 5\\

\rm \: \text{MV} = 6000 + \dfrac{ 25 \times 61}{2}\\

\rm \: \text{MV} = 6000 +762.50\\

\rm\implies \:\boxed{ \bf{ \:MV \:  =  \: Rs \: 6762.50 \:  \: }} \\

So, Manoj will get Rs 6762.50 on the maturity after 5 years.

\rule{190pt}{2pt}

Additional Information :-

Interest (l) received on a certain sum of money of Rs P deposited every month at the rate of r % per annum for n months is given by

 \red{\bold{{\boxed{\text{l} =  \text{P} \times \dfrac{ \text{n(n + 1)}}{24} \times \dfrac{ \text{r}}{100} }}} }\\

Answered by Anonymous
101

 \; {\underline{\underline{\pmb{\purple{\sf{ \; Given \; :- }}}}}}

  • Money Deposited = Rs.100
  • Time = 5 years
  • Deposited = per Month
  • Rate = 5 %

 \\ \\

 \; {\underline{\underline{\pmb{\orange{\sf{ \; To \; Find \; :- }}}}}}

  • Amount Received = ?

 \\ \qquad{\rule{200pt}{2pt}}

 \; {\underline{\underline{\pmb{\color{darkblue}{\sf{ \; SolutioN \; :- }}}}}}

 \dag \; {\underline{\underline{\pmb{\sf{ Formula \; Used \; :- }}}}}

  •  {\underline{\boxed{\pmb{\sf{ A = nP + P \times \bigg\lgroup \dfrac{ n ( n + 1) }{24 } \bigg\rgroup \times \dfrac{r}{100} }}}}}

 \\

Where :

  • A = Amount
  • n = Time
  • P = Principal
  • r = Rate

 \\ \\

 \dag \; {\underline{\underline{\pmb{\sf{ Calculating \; the \; Amount \; :- }}}}}

 \begin{gathered} \qquad \; \blue\dashrightarrow \; \; \red{\pmb{\sf { A = nP + P \times \bigg\lgroup \dfrac{ n ( n + 1) }{24 } \bigg\rgroup \times \dfrac{r}{100} }}} \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad \; \dashrightarrow \; \; \sf { A = \bigg( 60 \times 100 \bigg) + 100 \times \bigg\lgroup \dfrac{ 60 ( 60 + 1) }{24 } \bigg\rgroup \times \dfrac{5}{100} } \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad \; \dashrightarrow \; \; \sf { A = \bigg( 60 \times 100 \bigg) + 100 \times \bigg\lgroup \dfrac{ \cancel{60} ( 60 + 1) }{ \cancel{24} } \bigg\rgroup \times \dfrac{5}{100} } \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad \; \dashrightarrow \; \; \sf { A = 6000 + 100 \times \bigg\lgroup \dfrac{ 5 ( 60 + 1) }{2} \bigg\rgroup \times \dfrac{5}{100} } \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad \; \dashrightarrow \; \; \sf { A = 6000 + \cancel{100} \times \bigg\lgroup \dfrac{ 5 ( 60 + 1) }{2 } \bigg\rgroup \times \dfrac{5}{ \cancel{100} } } \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad \; \dashrightarrow \; \; \sf { A = 6000 + \bigg\lgroup \dfrac{ 5 ( 60 + 1) }{2 } \bigg\rgroup \times 5 } \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad \; \dashrightarrow \; \; \sf { A = 6000 + \bigg\lgroup \dfrac{ 5 \times 61 }{2 } \bigg\rgroup \times 5 } \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad \; \dashrightarrow \; \; \sf { A = 6000 + \dfrac{ 305 }{2 } \times \dfrac{5}{1} } \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad \; \dashrightarrow \; \; \sf { A = 6000 + \cancel\dfrac{ 305 }{2} \times \dfrac{5}{1} } \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad \; \dashrightarrow \; \; \sf { A = 6000 + 762.5 } \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad \; \dashrightarrow \; \; {\underline{\boxed{\pmb{\frak{ Amount = Rs. \; 6762.5 }}}}} \; \purple\bigstar \\ \\ \\ \end{gathered}

 \\ \\

 \therefore \; Mohan will get Rs.6762.5 .

 \\ \qquad{\rule{200pt}{2pt}}

Similar questions