Math, asked by geetmahla6, 17 days ago

Mohan opened a Recurring deposit Account in a bank for five year and deposite 100 RS every month. If the rate of interest 6% per annum them how much money will he get after 5 years.​

Answers

Answered by mathdude500
40

\large\underline{\sf{Solution-}}

Amount deposited per month, P = Rs 100

Rate of interest, r = 6 % per annum

Time = 5 years = 5 × 12 = 60 months

Number of instâllments, n= 60

We know,

Maturity Value (MV) received on maturity on the investment of Rs P per month at the rate of r % per annum for n months is

\bold{ \red{\boxed{\text{MV} =\text{nP} +  \text{P} \times \dfrac{ \text{n(n + 1)}}{24} \times \dfrac{ \text{r}}{100} }}}

So, on substituting the values of n, P and r from above, we have

\rm \: \text{MV} ={60 \times 100} +  {100} \times \dfrac{{60(60 + 1)}}{24} \times \dfrac{ \text{6}}{100}

\rm \: \text{MV} ={6000} + 15 \times 61

\rm \: \text{MV} ={6000} + 915

\rm\implies \:\rm \: \text{MV} = 6915

So,

Amount received on maturity = Rs 6915

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information

Interest (I) received on maturity on the investment of Rs P per month at the rate of r % per annum for n months is

\bold{ \red{\boxed{\text{I} = \text{P} \times \dfrac{ \text{n(n + 1)}}{24} \times \dfrac{ \text{r}}{100} }}}

Maturity Value (MV) received on maturity on the investment of Rs P per month at the rate of r % per annum for n months is also given by

 \pink{\boxed{\tt{ MV \:  =  \: \text{P} \:  +  \: I \: }}} \\

Answered by SƬᏗᏒᏇᏗƦƦᎥᎧƦ
111

Information provided with us :

  • Mohan opened a Recurring deposit Account in a bank for five years
  • He deposited Rs.100 every month
  • Rate of interest is 6% per annum

What we have to calculate :

  • How much money will he get after 5 years?

Using Formulas :

Maturity value:-

  • \boxed{\tt{M.V. \:  =  \: P \times  \: n \:  + \:   I }}

Interest:-

  •  \boxed{\tt{I\:  =  \: P \times  \:  \frac{n(n + 1)}{2 \times 12} \:  + \:    \dfrac{r}{100}  }}

In both the formulas,

  • P is Principal
  • n is number of months
  • r is rate of interest

Performing Calculations :

Finding out the interest by substituting the values in the given formula of calculating the interest~

Number of months :

We know that,

  • 1 year = 12 months
  • 5 years = 12 × 5 months
  • 5 years = 60 months

We have :

  • P is 100
  • r is 6%
  • n is 60

Putting the values :

: \longmapsto \:  \tt{I \: = \: 100 \times  \dfrac{60(60 + 1)}{2 \times 12}   \: \times   \: \dfrac{6}{100} }

: \longmapsto \:  \tt{I \: = \:100 \times  \dfrac{60(61)}{2 \times 12}   \: \times   \: \dfrac{6}{100} }

: \longmapsto \:  \tt{I \: = \:100 \times  \dfrac{60 \times 61}{2 \times 12}   \: \times   \: \dfrac{6}{100} }

: \longmapsto \:  \tt{I \:  =  \: 100 \times  \dfrac{3660}{24}   \: \times   \: \dfrac{6}{100} }

: \longmapsto \:  \tt{I \:  =  \:  \cancel{100} \times  \dfrac{3660}{24}   \: \times   \: \dfrac{6}{ \cancel{100}} }

: \longmapsto \:  \tt{I \:  =  \:  \dfrac{3660}{24}   \: \times   \: 6}

: \longmapsto \:  \tt{I \:  =  \:  \dfrac{3660}{ \cancel{24}}   \: \times   \: \cancel {6}}

: \longmapsto \:  \tt{I \:  =  \:  \dfrac{3660}{4}}

: \longmapsto \:  \tt{I \:  =  \:   \cancel\dfrac{3660}{4}}

: \longmapsto \:    \boxed{\bf \green{{I \:  =  \:   915} }}

Now, putting the values in formula of M.V. :

: \longmapsto \:   \sf{M.V. \:  =  \: 100  \: \times  \: 60 +  \: 915}

: \longmapsto \:   \sf{M.V. \:  =  \: 6000 +  \: 915}

: \longmapsto \:     \boxed{\pink{\bf{M.V. \:  =  \: 6915}}}

\underline{\bf{Henceforth,  \: he \: would \: get \:  Rs.6915 \: after \: 5 \: years}}

Similar questions