Science, asked by Miracle901, 2 months ago

Molarity and molality of a solution of a liquid (mol wt=50) in aqueous solution is 9 and 10 respectively. What is the density of solution?​

Answers

Answered by ItzBrainlyLords
2

Explanation:

Solving:

 \:

Molarity

 \large \mathtt{ =  \dfrac{mass \: of \: solute}{molar \: mass \: of \: solute} \times  \dfrac{100}{volume\: of \: solution}  }

 \:

 \large  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: : ⇒ \:  \mathtt{m =  \dfrac{w}{ {m} '}  \times  \dfrac{1000}{v} }

 \:

 \large    \: : ⇒ \:  \mathtt{w =   \dfrac{m \times m' \times v}{1000} }  \: \rm \longrightarrow(1)

 \:

Molarity

 \large \mathtt{ =  \dfrac{mass \: of \: solute}{molar \: mass \: of \: solute} \times  \dfrac{100}{mass\: of \: solvent}  }

 \:

 \large  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: : ⇒ \:  \mathtt{m =  \dfrac{w}{ {m} '}  \times  \dfrac{1000}{w'} }

 \:

 \large    \: : ⇒ \:  \mathtt{w =   \dfrac{m \times m' \times w'}{1000} }  \: \rm \longrightarrow(2)

 \:

Mass of Solution = Mass of Solvent + Mass of Solute

 \:

⇒ w" = w + w'

 \:

⇒ vd = w + w'

 \:

⇒ w' = vd - w ________ (3)

 \:

Putting Values in equation

 \:

 \large    :    ⇒ \: \mathtt{   \dfrac{m \times m' \times v}{1000}  = \mathtt{   \dfrac{m \times m' \times  (vd - w)}{1000}  }  }

 \:

⇒ M × v = mvd - mw

 \:

 \large⇒ \mathtt{ M × v = mvd -m \left(  \dfrac{mm'v}{1000} \right)}

 \:

 \large⇒ \mathtt{ M  = m \left(  d - \dfrac{m'M}{100} \right)}

 \:

 \large⇒ \mathtt{ d = M  \left(   \dfrac{1}{m}   + \dfrac{m'}{1000} \right)}

 \:

Density

 \large \mathtt{ =  molarity\left( \dfrac{1}{molality}  +  \dfrac{molecular \: weight}{1000}  \right)}

 \:

 \large \:  \:  \:  \:  \:  \:  \:  : ⇒ \mathtt{ d = 9  \left(   \dfrac{1}{10}   + \dfrac{50}{1000} \right)}

 \:

D = 1.35g/cc

Answered by utkarshsahu1804
2

Answer:

Explanation:

vaise tumhari bhaut id hai kya?

Similar questions