Physics, asked by vrlappannairj, 5 months ago

monizontal range of projectile is fourtimrz of the maximum height allowed the angle of projectipnwith thr horizonatal will be​

Answers

Answered by Arceus02
0

\malteseGiven:-

  • Maximum Range (R) = 4 × Maximum Height (H)

\\

\malteseTo find:-

  • Angle of projection (\theta)

\\

\malteseAnswer:-

As we know that,

 ▪ \sf \: R =  \dfrac{u {}^{2}sin(2 \theta) }{g}

▪  \sf \: H =  \dfrac{u {}^{2}sin {}^{2}( \theta)  }{2g}

According to the question

 \sf \: R = 4H

  \longrightarrow \sf \: \dfrac{ {u}^{2}sin(2 \theta) }{g}  = 4 \times  \dfrac{ {u}^{2} {sin}^{2} ( \theta) }{2g}

  \longrightarrow \sf \: \dfrac{  \cancel{{u}^{2}}sin(2 \theta) }{ \cancel{g}}  = 4 \times  \dfrac{  \cancel{{u}^{2}} {sin}^{2} ( \theta) }{2 \cancel{g}}  \:

 \longrightarrow  \sf sin(2 \theta) = 2 \times sin( \theta) \times sin( \theta)

  \sf \: \longrightarrow 2 \times sin( \theta) \times cos( \theta) = 2 \times sin( \theta) \times sin( \theta)

  \sf \: \longrightarrow  \cancel{2} \times  \cancel{sin( \theta)} \times cos( \theta) =  \cancel{2} \times  \cancel{sin( \theta)} \times sin( \theta)

 \longrightarrow \sf  \dfrac{sin( \theta)}{cos( \theta)}  = 1

 \longrightarrow \sf \tan( \theta) = 1

From trigonometry ratio table, we know that,

 \sf \: tan( {45}^{o} ) = 1

So,

 \longrightarrow \sf tan( \theta) = tan( {45}^{o} )

 \longrightarrow \underline{ \underline{ \sf{ \green{ \theta  =  {45}^{o}  }}}}

Similar questions