Physics, asked by hemanthsy1820, 1 year ago

Monochromatic light of wavelength 3000 A° is incident normally on a surface of area 4 cm². If the intensity of light is 150 mW/m², find the number of photons being incident on this surface in one second.

Answers

Answered by ranikumari4878
3

Answer:

9.05\times 10^{15}.

Explanation:

Given,

\textrm{Wavelength of light}, \lambda\ =\ 3000\ A^o

                                                 =\ 3000\times 10^{-10}\ m

                                                 =\ 3\times 10^{-7}\ m

\textrm{area of the surface},\ A\ =\ 4\ cm^2

                                      =\ 4\times 10^{-2}\ m

\textrm{intensity of light},\ I\ =\ 150\ mW/m^2

                                =\ 150\times 10^{-3}\ W/m^2

                               =0.15\ W/m^2

Hence, energy of the radiation falling on the surface in 1 second is given by

                                  E\ =\ intensity\times area\times time

                                        =\ 0.15\times 4\times 10^{-2}\times 1 J

                                      =\ 0.6\times 10^{-2}\ J

And energy of radiation can be also determined by

                             E\ =\ \dfrac{n.h.c}{\lambda}

            where, n = number of photon

                         h\ =\textrm{\ planck's\ constant}\ =\ 6.625\times 10^{-34}

                        c\ =\textrm{\ speed of light\ }=\ 3\times 10^{8} m/s

So,

\ 0.6\times 10^{-2}\ =\ \dfrac{n.6.625\times 10^{-34}\times 3\times 10^8}{3\times 10^{-7}}

=>\ n\ =\ 9.05\times 10^{15}

Hence, the total number of photon will be 9.05\times 10^{15}.

Similar questions