Physics, asked by 19p0178, 9 months ago

Monochromatic light of wavelength 400 nm falls normally on a slit of width 0.1 mm. Find the angular positions of first secondary maximum and second minimum in the diffraction pattern.

a)20 ' , 27 '
b)27 ' , 20 '

Answers

Answered by nirman95
1

Given:

Light of wavelength 400 nm falls normally on a slit of width 0.1 mm

To find:

Angular width of

  • 1st secondary maxima

  • Second minima

Calculation:

The general formula for angular width for any order maxima or minima (except the central maxima) is :

 \boxed{ \sf{ \phi =  \dfrac{ \lambda}{ d} }}

\lambda refers to wavelength and d refers to the inter-slit distance.

For the 1st secondary maxima:

 \therefore \:  \phi1 =  \dfrac{ \lambda}{d}

 =  >  \:  \phi1 =  \dfrac{400 \times  {10}^{- 9} }{0.1 \times  {10}^{ - 3} }

 =  >  \:  \phi1 =  \dfrac{400 \times  {10}^{- 9} }{{10}^{ - 4} }

 =  >  \:  \phi1 =  400 \times  {10}^{- 5}

 =  >  \:  \phi1 =  4 \times  {10}^{- 3}  \: rad

 =  >  \:  \phi1 = 13.75 \: minutes

For the 2nd minima:

 \therefore \:  \phi2=  \dfrac{ \lambda}{d}

 =  >  \:  \phi2=  \dfrac{400 \times  {10}^{- 9} }{0.1 \times  {10}^{ - 3} }

 =  >  \:  \phi2 =  \dfrac{400 \times  {10}^{- 9} }{{10}^{ - 4} }

 =  >  \:  \phi2=  400 \times  {10}^{- 5}

 =  >  \:  \phi2=  4 \times  {10}^{- 3}  \: rad

 =  >  \:  \phi2= 13.75 \: minutes

So, final answer is :

\boxed{\sf{\phi1 = \phi2 = 13.75 '}}

Similar questions