Motion in a Plane
and difference of two vectors A and B are
The sum and diff
B-2 . +6ộ + k and à - B = 4 î+25 - 112.
magnitude of each vector and their scalar
Find the magnitude of en
product AB.
Ans. V50, 41, - 25
Answers
Explanation:
Given: A + B = 2i + 6j - k
Given: A - B = 4i + 2j - 11k
On Solving (i) & (ii), we get
A + B = 2i + 6j + k
A - B = 4i + 2j - 11k
------------------------------
2A = 6i + 8j - 10k
A = 3i + 4j - 5k
(i)
Magnitude of A = √(3)² + (4)² - (5)²
= √50
Substitute A = 3i + 4j - 5k in above equations, we get
⇒ 3i + 4j - 5k + B = 2i + 6j + k
⇒ B = -i + 2j + 6k
(ii)
Magnitude of B = √(-1)² + (2)² + (6)²
= √1 + 4 + 36
= √41
(iii)
Dot product (A.B) = 3 * (-1) + 4 * 2 + (-5) * 6
= -3 + 8 - 30
= -25
Hope it helps!
Let A=x i^ +y j^+z k^, B=a i^+b j^+ c k^.[i^ -->i cap, j^ -->j cap, k^ -->k cap].
Therefore, x+a=2.....(1) , x-a=4....(2).
Adding (1)&(2),
2x=6
--> x=3.
So, a = 2-x = 2-3 = -1.
Similarly, y+b=6.....(3) , y-b=2.....(4)
Adding (3)&(4),
2y=8
--> y=4.
So, b = 6-y = 6-4 = 2.
Finally, z+c=1....(5) , z-c= -11.....(6)
Adding (5)&(6),
2z=-10
-->z=-5
So, c = 1-z = 1-(-5) = 6.
Thus, A = 3 i^ + 4 j^ - 5 k^, B = -1 i^ + 2 j^ + 6 k^.
Therefore = |A| = sq rt(x^2+y^2+z^2) = sq rt(9+16+25) = sq rt(50).[|A|-->Magnitude of vector A]
|B| = sq rt(1+4+36) = sq rt(41) .
Other than the form u gave, A.B is also represented by [(x*a)+(y*b)+(z*c)]. So, A.B here is equal to (3*[-1])+(4*2)+([-5]*6) = -3+8-30 = -25.