Physics, asked by rohitkhanwani605, 7 months ago

Motion of a particle is given by equation s = (3t(cube) + 7t(sq.) + 14t + 8) m. the value of acceleration of the particle at t = 1 sec is

Answers

Answered by Anonymous
14

Given:

Position of particle w.r.t. time:

 \rm s = (3 {t}^{3}  + 7 {t}^{2}  + 14t + 8) \: m

To Find:

Accelration (a) of particle at t = 1 s

Answer:

Double differentiation of position-time relation gives accelration:

 \bf \implies a =  \dfrac{ {d}^{2}s }{d {t}^{2} }  \\  \\  \rm \implies a =  \dfrac{ {d}^{2} }{d {t}^{2} }(3 {t}^{3}  + 7 {t}^{2}  + 14t + 8) \\  \\  \rm \implies a = 18t + 14

At t = 1 s:

 \rm \implies a = 18 \times 1 + 14 \\  \\  \rm \implies a = 18 + 14 \\  \\  \rm \implies a = 32 \: m {s}^{ - 2}

 \therefore  \boxed{\mathfrak{Acceleration \ of \ particle \ at \ 1 \ s = 32 \ m/s^2}}

Answered by Anonymous
23

\;\;\underline{\textbf{\textsf{ Given:-}}}

 \rm s = (3 {t}^{3}  + 7 {t}^{2}  + 14t + 8) \: m

\;\;\underline{\textbf{\textsf{ To Find :-}}}

• Acceleration, a when t = 1 sec

\;\;\underline{\textbf{\textsf{ Solution :-}}}

\underline{\:\textsf{As we know the formula  :}}

 \bf \longrightarrow a =  \dfrac{ {d}^{2}s }{d {t}^{2} }  \\

\underline{\:\textsf{Substitute the value of s :}}

  \\  \rm \longrightarrow a =  \dfrac{ {d}^{2} }{d {t}^{2} }(3 {t}^{3}  + 7 {t}^{2}  + 14t + 8) \\  \\  \rm  \longrightarrow a = 18t + 14

\underline{\:\textsf{Now,  substitute t = 1  :}}

 \rm  \longrightarrow  a = 18 \times 1 + 14 \\  \\  \rm  \longrightarrow  a = 18 + 14 \\  \\  \rm  \longrightarrow  a = 32 \: m {s}^{ - 2}

\;\;\underline{\textbf{\textsf{ Hence-}}}

\underline{\textsf{Acceleration of the particle at 1 sec is  \textbf{32m/s²}}}.

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

Similar questions