Computer Science, asked by NoExist, 1 day ago

Mouse vertebrae compression testing protocol?​

Answers

Answered by adityaaa11610
0

Answer:

A biomechanical test is a good evaluation method that describes the structural, functional, and pathological differences in the bones, such as osteoporosis and fracture. The tensile test, compression test, and bending test are generally performed to evaluate the elastic modulus of the bone using mice. In particular, the femoral head compression test is mainly used for verifying the osteoporosis change of the femoral neck. This study conducted bone mineral density analysis using in vivo microcomputed tomography (micro-CT) to observe changes in osteoporosis over time. It proposed a method of identifying the elastic modulus of the femur in the normal group (CON group) and the osteoporotic group (OVX group) through finite element analysis based on the femoral head compression test and also conducted a comparative analysis of the results. Through the femoral head compression test, it was verified that the CON group’s ultimate and yield loads were significantly higher than those of the OVX group. It was considered that this result was caused by the fact that the bone mineral density change by osteoporosis occurred in the proximal end more often than in the femur diaphysis. However, the elastic modulus derived from the finite element analysis showed no significant difference between the two groups.

Answered by itzAwesomeSoul10
1

Answer:

\huge\fbox\blue {answer★}

finite element analysis (FEA) developed from computed tomography (CT) images of bones are useful in pre-clinical rodent studies assessing treatment effects on vertebral body (VB) strength. Since strength predictions from microCT-derived FEAs (μFEA) have not been validated against experimental measurements of mouse VB strength, a parametric analysis exploring material and failure definitions was performed to determine whether elastic μFEAs with linear failure criteria could reasonably assess VB strength in two studies, treatment and genetic, with differences in bone volume fraction between the control and the experimental groups. VBs were scanned with a 12-μm voxel size, and voxels were directly converted to 8-node, hexahedral elements. The coefficient of determination or R2 between predicted VB strength and experimental VB strength, as determined from compression tests, was 62.3% for the treatment study and 85.3% for the genetic study when using a homogenous tissue modulus (Et) of 18 GPa for all elements, a failure volume of 2%, and an equivalent failure strain of 0.007.

Similar questions