Math, asked by priyeshkumaranand187, 11 months ago

MPLE 12 Fond the equation of the line midway between the parallel lines
9x + y - 7=0 and 3x +2y+6=0.​

Answers

Answered by umiko28
1

Answer:

\huge\underline{ \underline{ \red{your \: \: answer}}}

Step-by-step explanation:

\sf\pink{The \: given  \: lines \:  are}  \\ \sf\pink{9x + 6y - 7 = 0} \\   \sf\pink{ i.e., 3x + 2y - 7/3 = 0 ....(i) }  \\ \sf\pink{  and  \: 3x + 2y + 6 = 0 ....(ii) } \\  \sf\blue{ Let, \:  the  \: parallel \:  line  \: is  \:  - } \\  \sf\red{ 3x + 2y + k = 0 .....(iii) } \\ \sf\red{ \:</p><p>Since  \: (iii)  \: no  \: line  \: passes \:  midway  \: between } \\ \sf\red{ \:(i) and (ii) the distance between } \\ \sf\red{ (iii) and (i) (iii) and (ii) are  \: equal} \\  \sf\orange{ thus =  &gt;  \frac{ |(k +  \frac{7}{3} )| }{ \sqrt{13} }  =  \frac{ |(k - 6)| }{ \sqrt{13} } } \\  \sf\orange{ =  &gt;  {(k +  \frac{7}{3}) }^{2} =  {(k - 6)}^{2}  } \\  \sf\orange{ =  &gt;  \frac{14k}{3} +  \frac{49}{9}  =  - 12k + 36 } \\  \sf\orange{ =  &gt;  \frac{50k}{3}  =  \frac{279}{9} } \\  \sf\orange{ =  &gt; k =  \frac{11}{6} } \\  \sf\purple{ \:Therefore, the \:  required  \: parallel \:  line  \: is} \\   \sf\purple{ \:3x + 2y + 11/6 = 0} \\ \sf\purple{ \:i.e., 18x + 12y + 11 = 0} \\ \large\boxed{ \fcolorbox{pink}{red}{hope \: it \: help \: you}}

Answered by Anonymous
1

\Large{\underline{\underline{\bf{Solution :}}}}

The given parallel lines are:

→9x + 6y - 7 = 0 ......(1)

→3x + 2y + 6 = 0 .......(2)

\sf{Multiplying \: equation \: (2) \: by \: 3}

9x + 6y + 18=0 ......(3)

Let 9x + 6y + a = 0 .....(4) be the line parallel.

Which are equidistant from the line (1) and(2).

The distance between (1)and(4) is equal to The distance between (3)and(4)

a + 7 = a - 18

→a + 7 = -(a - 18)

→2a = 11

→a = 11/2 .......(5)

what we need is only a value .

Putting (4) in (5),

9x + 6y + 11/2 = 0

18x + 12y + 11 = 0 is the required line.

Similar questions