Math, asked by waa8, 1 month ago

Mr. Aggarwal buys a house at Rs.30,00,000 for which he agrees to make equal
pàyments at the end of each year for 10 years. If money is wørth 10% p.a., find the
amóunt of each instàlment. [Take (1.1) –10 = 0.3855]

Answers

Answered by 12thpáìn
3

We have ,

  • V = Rs.30,00,000 ,
  • r = 10% p. a. ,
  • n = 10 years.
  • A = ?

Using formula

  • V = A/r[1 – (1 + r )^{–n} ]

Therefore ,

 \sf{30,00,000 =  \dfrac{A}{(10/100)}  \bigg[ 1 – {1 + (10/100)^{-10}} \bigg]}\\

 \sf{30,00,000= \dfrac{  A}{0.1} \bigg[1 – (1.1)^{-10} \bigg]}\\

 \sf{3,00,000 = A [1 – 0.3855] \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  -  -  -  -  [As, (1.1) ^{ –10} =0.3855]}\\

\therefore \:  \sf{A =  \dfrac{3,00,000}{0.6145} =  \bf488201.79}\\\\

  • Hence , the amount of each instálment is Rs.488201.79 .
Attachments:
Answered by Anonymous
2

We have ,

  • We have , V = Rs.30,00,000 ,
  • We have , V = Rs.30,00,000 , r = 10% p. a. ,
  • We have , V = Rs.30,00,000 , r = 10% p. a. , n = 10 years.
  • We have , V = Rs.30,00,000 , r = 10% p. a. , n = 10 years. A = ?

We have , V = Rs.30,00,000 , r = 10% p. a. , n = 10 years. A = ? Using formula

  • We have , V = Rs.30,00,000 , r = 10% p. a. , n = 10 years. A = ? Using formulaV = A/r[1 – (1 + r )^{–n} ]

We have , V = Rs.30,00,000 , r = 10% p. a. , n = 10 years. A = ? Using formulaV = A/r[1 – (1 + r )^{–n} ]

We have , V = Rs.30,00,000 , r = 10% p. a. , n = 10 years. A = ? Using formulaV = A/r[1 – (1 + r )^{–n} ] Therefore ,

We have , V = Rs.30,00,000 , r = 10% p. a. , n = 10 years. A = ? Using formulaV = A/r[1 – (1 + r )^{–n} ] Therefore ,  \sf{30,00,000 =  \dfrac{A}{(10/100)}  \bigg[ 1 – {1 + (10/100)^{-10}} \bigg]}

We have , V = Rs.30,00,000 , r = 10% p. a. , n = 10 years. A = ? Using formulaV = A/r[1 – (1 + r )^{–n} ] Therefore ,  \sf{30,00,000 =  \dfrac{A}{(10/100)}  \bigg[ 1 – {1 + (10/100)^{-10}} \bigg]}

We have , V = Rs.30,00,000 , r = 10% p. a. , n = 10 years. A = ? Using formulaV = A/r[1 – (1 + r )^{–n} ] Therefore ,  \sf{30,00,000 =  \dfrac{A}{(10/100)}  \bigg[ 1 – {1 + (10/100)^{-10}} \bigg]}  \sf{30,00,000= \dfrac{  A}{0.1} \bigg[1 – (1.1)^{-10} \bigg]}

We have , V = Rs.30,00,000 , r = 10% p. a. , n = 10 years. A = ? Using formulaV = A/r[1 – (1 + r )^{–n} ] Therefore ,  \sf{30,00,000 =  \dfrac{A}{(10/100)}  \bigg[ 1 – {1 + (10/100)^{-10}} \bigg]}  \sf{30,00,000= \dfrac{  A}{0.1} \bigg[1 – (1.1)^{-10} \bigg]} \sf{3,00,000 = A [1 – 0.3855] \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  -  -  -  -  [As, (1.1) ^{ –10} =0.3855]}

We have , V = Rs.30,00,000 , r = 10% p. a. , n = 10 years. A = ? Using formulaV = A/r[1 – (1 + r )^{–n} ] Therefore ,  \sf{30,00,000 =  \dfrac{A}{(10/100)}  \bigg[ 1 – {1 + (10/100)^{-10}} \bigg]}  \sf{30,00,000= \dfrac{  A}{0.1} \bigg[1 – (1.1)^{-10} \bigg]} \sf{3,00,000 = A [1 – 0.3855] \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  -  -  -  -  [As, (1.1) ^{ –10} =0.3855]}\therefore \:  \sf{A =  \dfrac{3,00,000}{0.6145} =  \bf488201.79}

  • Hence , the amount of each instálment is Rs.488201.79 .

Similar questions