Mr. Gulati has a Recurring Deposit Account of
*300 per month. If the rate of interest is 12%
and the maturity value of this account is
8,100; find the time (in years) of this
Recurring Deposit Account.
Answers
The time of Recurring Deposit Account is 2 years .
Step-by-step explanation:
Given as :
The installment deposited in account per month = p = Rs 300
The rate of interest applied = r = 12%
The maturity value after n years = Amount = A = Rs 8100
Let The time period of maturity = n months
According to question
Standing Instruction = S.I = per month installment × ×
or, S.I = Rs 300 × ×
or, S.I = Rs n ( n + 1 )
Again
Maturity value = S.I + installment amount × number of months
Or, Rs 8100 = Rs 1.5 n ( n + 1 ) + Rs 300 × n
Or, 8100 = 1.5 ( n² + n ) + 300 n
or, = ( n² + n ) +
Or, 5400 = ( n² + n ) + 200 n
Or, ( n² + n ) + 200 n - 5400 = 0
Or, n² + 201 n - 5400 = 0
Or, n² + 225 n - 24 n - 5400 = 0
Or, n ( n + 225 ) - 24 ( n +225 ) = 0
Or, ( n +225 ) ( n - 24 ) = 0
i.e ( n +225 ) = 0 , ( n - 24 ) = 0
∴ n = - 225 , n = 24
So, The time period of maturity = n = 24 months = 2 years
Hence, The time of Recurring Deposit Account is 2 years . Answer
Answer:
Answer is 2years
Step-by-step explanation: