Math, asked by rajuhemanth418, 3 months ago

Mr. John opened a new restaurante van beli
customer he decided to analyze them
the bill amount in USD is as givende
(10,15,20,25, 15,20,35,40,30.39
What is the variance of the date​

Answers

Answered by MehulNathani10
9

Answer:

L.H.S. = x2 – y2

= (p sec θ + q tan θ)2 – (p tan θ + q sec θ)2

= p2 sec θ + q2 tan2 θ + 2 pq sec 2 tan 2 -(p2 tan2 θ + q2 sec2 θ + 2pq sec θ tan θ)

= p2 sec θ + 2 tan2 θ + 2pq sec θ tan θ – p2 tan2 θ – q2 sec θ – 2pq sec θ tan θ

= p2(sec2 θ – tan2 θ) – q2(sec?2 θ – tan2 θ) =

= p2 – q2 …[sec2 θ – tan2 θ = 1

= R.H.S.hii

i want a girl bestie

we can talk on

in$ta-mehul_1800

$n@pch@t-unknown_2020q

Answered by marishthangaraj
0

Given:

Mr.John opened a new restaurant.

The bill amount is given as  

10 , 15 , 20 , 25 , 15 , 20 , 35 , 40 , 30 , 39

To find:

The variance of the given date​.

Solution:

We can find the variance by using the following formula,

Variance = Σ ( x - Mean)² / n

Mean = \frac{10 + 15 + 20 + 25 + 15 + 20 + 35 + 40 + 30 + 39}{10}

Mean = \frac{249}{10}

Mean = 24.9

Mean = 25

Variance = Σ ( x - Mean )² / n\frac{(10-25)^{2}+ (15-25)^{2}+(20-25)^{2}+(25-25)^{2}+(15-25)^{2}+(20-25)^{2}+(35-25)^{2}(40-25)^{2}+(30-25)^{2}+(39-25)^{2}}{10}Variance = \frac{(15)^{2}+ (-10)^{2}+(-5)^{2}+(0)^{2}+(-10)^{2}+(-5)^{2}+(10)^{2}(15)^{2}+(5)^{2}+(14)^{2}}{10}

Variance = \frac{225+100+25+100+25+100+225+25+196}{10}

Variance = \frac{1021}{10}

Variance = 102.1

Final answer:

The variance of the given date​ is 102.1

Similar questions