Math, asked by sudhir3852, 1 year ago

Mr. rk Nair gets Rs6455 at the end of one year at the rate of 14% per annum in a recurring deposit account. Find the monthly installment.


Cashew96: M A = Rs 6455

Maturity amt = pn + I

so,. 

6455 = pn + I

=> 6455 = ( p × 12 ) + [ p × 12 × 13 × 14 ] ÷ ( 2 × 12 × 100 ) 

=> 6455 × 100 = 1200p + 91p 

= frac{6455 \times 100}{1291} = p=12916455×100​=p 

= 500 = p

Answers

Answered by abhi569
163
 \mathbf{Maturity Amount ( MA ) = Rs 6455} \\ <br />\mathbf{ Number\: of\: months ( time \: or \: n ) = 1 × 12 months = 12 \: months} \\ \mathbf{<br />Rate ( r ) = 14\%}




 \bold{ We \: Know, Maturity \: Amount =Pn + Interest}




Hence,


 \bold{ 6455 = (12 \times P) + \frac{P \times n \times (n + 1)}{2 \times 24} \times \: \frac{14}{100} } \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: (Interest \: = \frac{P\times n \times (n + 1)}{2 \times 24} \times \frac{r}{100} ) \\ \\ \\ = &gt;6455 = 12 P + \frac{13P \times 7}{100} \\ \\ \\ = &gt; 6455 = \frac{1200P + 91P}{100} \\ \\ \\ = &gt; \frac{6455 \times 100}{1291} = P \\ \\ \\ =&gt; 500 = P




Hence, P = ₹500




 \mathbf{P = Principal = Monthly \: Instalment = Rs500}

Azikhan: :))
abhi569: (-;
sudhir3852: (-:
abhi569: ;-)
TheUrvashi: And the best maths solver award Goes to Abhi569
TheUrvashi: ✌✌✌✌✌✌
abhi569: (-:
rohit2369: thanks
TeenTitansGo: well he has gone, from his side, my pleasure
Answered by TeenTitansGo
105
Maturity amount = Rs 6455



We Know, Maturity amount = pn + I


Hence,


6455 = pn + I


=> 6455 = ( p × 12 ) + [ p × 12 × 13 × 14 ] / ( 2 × 12 × 100 )


=> 6455 × 100 = 1200p + 91p


 = &gt;  \frac{6455 \times 100}{1291}  = p


=> 500 = p







Monthly Instalment = ₹ 500

aryangupta42: hello brother/sister
Similar questions