Math, asked by rajeshkumarbbd, 11 months ago

Mrs.goswami deposits 1000 every month in a recurring deposit account for 3 years at 8% interest per annum .Find the matured value.​

Answers

Answered by Anonymous
65

AnswEr :

Rs.40440

\bf{\red{\underline{\underline{\bf{Given\::}}}}}

Mrs. goswami deposits 1000 every month in a regarding deposits account for 3 years at 8% Interest per annum.

\bf{\red{\underline{\underline{\bf{To\:find\::}}}}}

The matured value.

\bf{\red{\underline{\underline{\bf{Explanation\::}}}}}

Formula use :

S.I. = P × n(n+1)/2 × 12 × r/100

  • Mrs. Goswami deposit (P) = Rs.1000
  • Time (n) = 3 years = (12 × 3 ) = 36 months
  • Rate (r) = 8%

A/q

S.I. = 1000 × 36(36+1)/2 × 12 × 8/100

S.I. = 1000 × 36(37)/24 × 8/100

S.I. = 1000 × 1332/3 × 100

S.I. = Rs.(10 × 444)

S.I. = Rs.4440.

So,

Matured Value = Principal × Time + Interest

Matured Value = 1000 × 36 + 4440

Matured Value = 36000 + 4440

Matured Value = Rs.40440.

Answered by Anonymous
25

 \huge \mathfrak \red{answer}

➹40440

✥Question:✥

Mrs.goswami deposits 1000 every month in a recurring deposit account for 3 years at 8% interest per annum .Find the matured value.

step to step explanation

 \sf{given \: from \: the \: question}

 \rm{p = 1000}

 \rm{t = 3yrs}

 \rm{n = 12 \times t}

 \sf{ = 12 \times 3 = 36}

 \rm{r = 8\%}

________________________________

problem solving:

 \tt{p = \frac{36(36 + 1)}{2} \times 1000}

 \tt{  = \frac{36 \times 37 \times 1000 \times 8}{2 \times 12 \times 100}}

 \tt{12 \times 37 \times 10 = 4440}

______________________________

 \tt{matured \: value = 36000 + 4440}

 \bf{ \huge{ \boxed{ \red{ \tt{40440 \: }}}}}

Similar questions