Math, asked by harishnihill, 10 months ago

Mrs . Sheela Serene deposited ₹1500 per month in a recurring deposit scheme of a bank for 9 months . If she gets ₹ 675 as interest at the time of maturity , find the rate of interest , if the interest is calculated at the end of each month . Find also the maturity value of the deposits . ​

Answers

Answered by Rachel2004
9

Answer:

Rate = 12% p.a      &        Maturity value = Rs. 14175

Given :

P = Rs.1500

I = Rs. 675

n = 9 months

Step-by-step explanation:

Interest = \frac{Pn(n+1)R}{2400}  ----------Formula

Therefore,

647 = \frac{1500 * 9 * 10 * R}{2400}

Rate = \frac{675 * 2400}{1500 * 9 * 10}

Rate = 12%

Maturity value = Pn + Interest ---------------Formula

                       =( 1500*9) + 675

                       = 13500 + 675

                       = Rs. 14175.

Answered by TamilvananR
0

Answer:

r=12%

MV=14175

Step-by-step explanation:

P=1500

I=675

n=9 months

I=P( n*n+1 )/ 2*12 * r/100

675 = 1500*9*10/2*12*r/100

675 = 15000*90*r/2400

r= 675*2400/1500*90

= 1620000/135000

r = 12%

MV= P*n+I

= 1500*9+675

= 13500+675

MV= 14175

Similar questions