Math, asked by gopikrishna9, 10 months ago

msinB = nsin(2A+B) then (m+n) tanA=
(m-n) tan (A+B)​

Answers

Answered by MaheswariS
35

\textbf{Given:}

m\;sinB=n\;sin(2A+B)

\textbf{To prove:}

(m+n)\,tanA=(m-n)\,tan(A+B)

\textbf{Solution:}

\text{Consider,}

m\;sinB=n\;sin(2A+B)

\text{This can be written as}

\dfrac{sin(2A+B)}{sinB}=\dfrac{m}{n} ......(1)

\text{Add 1 on bothsides of (1), we get}

\dfrac{sin(2A+B)}{sinB}+1=\dfrac{m}{n}+1

\dfrac{sin(2A+B)+sinB}{sinB}=\dfrac{m+n}{n} .......(2)

\text{Subtract 1 on bothsides of (1), we get}

\dfrac{sin(2A+B)}{sinB}-1=\dfrac{m}{n}-1

\dfrac{sin(2A+B)-sinB}{sinB}=\dfrac{m-n}{n} .......(3)

\text{Divide (2) by (3), we get}

\dfrac{\frac{sin(2A+B)+sinB}{sinB}}{\frac{sin(2A+B)-sinB}{sinB}}=\dfrac{\frac{m+n}{n}}{\frac{m-n}{n}}

\dfrac{sin(2A+B)+sinB}{sin(2A+B)-sinB}=\dfrac{m+n}{m-n}

\text{Using the identity}

\boxed{sinC+sinD=2\:sin(\frac{C+D}{2})\:cos(\frac{C-D}{2})}

\boxed{sinC-sinD=2\:cos(\frac{C+D}{2})\:sin(\frac{C-D}{2})}

\dfrac{2\:sin(\frac{2A+B+B}{2})\:cos(\frac{2A+B-B}{2})}{2\:cos(\frac{2A+B+B}{2})\:sin(\frac{2A+B-B}{2})}=\dfrac{m+n}{m-n}

\dfrac{sin(A+B)\:cosA}{cos(A+B)\:sinA}=\dfrac{m+n}{m-n}

\implies(m-n)\dfrac{sin(A+B)}{cos(A+B)}=(m+n)\dfrac{sinA}{cosA}

\implies\bf(m-n)\,tan(A+B)=(m+n)\,tanA

Answered by ratnakumari83668
0

Kskskskdnxjsjsjsjsjjshshsjs

Similar questions