Math, asked by vamsikrishna5647, 8 months ago

Msinb=nsin(2a+b) then prove that (m+n) tana=(m-n)tan (a+b)

Answers

Answered by barbiedoll275
2

Answer:

ifm sin B=nsin(2A+B) prove that(m+n)tanA=(m-n)tan(A+B)

Step-by-step explanation:

(m-n)tan(A+B)

= (m-n) (tanA+tanB)/(1-tanAtanB)

= (mtanA - ntanB)/(1-tanAtanB)

now multiply top and bottom by cosAcosB:

= (msinAcosB-nsinBcosA)/(cosAcosB-sinAsinB)

the rest should follow without difficulty.

Similar questions