Msinb=nsin(2a+b) then prove that (m+n) tana=(m-n)tan (a+b)
Answers
Answered by
2
Answer:
ifm sin B=nsin(2A+B) prove that(m+n)tanA=(m-n)tan(A+B)
Step-by-step explanation:
(m-n)tan(A+B)
= (m-n) (tanA+tanB)/(1-tanAtanB)
= (mtanA - ntanB)/(1-tanAtanB)
now multiply top and bottom by cosAcosB:
= (msinAcosB-nsinBcosA)/(cosAcosB-sinAsinB)
the rest should follow without difficulty.
Similar questions