Math, asked by limnamathew6378, 1 year ago

Mthe area of a rectangular plot 528 m2 the length of the plot is one more than twice its breadth we meed to find the length and breadth of the plot

Answers

Answered by DSamrat
3
Hey.

Given area of the plot = 528 m^2

Let breadth of the plot be x m

Then length = 2x + 1 m

As, area of rectangle = length × breadth

so, 528 = (2x+1)x

or, 528 = 2x^2 + x

or, 2x^2 + x - 528 = 0

or \:  \: x \:  =  \frac{ - 1 +  \sqrt{ {1}^{2}  - 4 \times 2 \times  ( - 528)} }{2 \times 2}  \\  \\ or \:  \: x \:  =   \frac{ - 1 +  \sqrt{1 + 4224} }{4}  \\  \\ or \:  \: x \:  =  \frac{ - 1 +  \sqrt{4225} }{4}  \\  \\ or \: x \:  =  \:   \frac{ - 1 + 65}{4}  \\  \\ or \:  \: x \:  =  \frac{64}{4}  \\  \\ so \:  \: x \:  =  \: 16
So, breadth is 16 m

and length = 2×16 + 1 = 33 m

Thanks.
Answered by OmShinde76
1

             t is an linear  equation. So                                      *=multiply

Let the breadth be:x                                       
Therefore, the length: 2x+1

According to the condition - 
 
Area of rectangular plot=l*b
                 528               =x[2x+1]
                 528               =2x2+1x
                    0                =2x2+1x-528
                    0                =2x2+33x-32x-528
                   0                 =x[2x+33]-16[2x+33]
                  0                  = [2x+33] [x-16]
             
2x+33=0                                           OR                       x-16=0
  2x    =-33                                                                     
                                                                                        x=16                         x    =-16.5 

 Area cannot be negative 
 
Therefore x=16 is the solution 
 
length=1+2x                          breadth=x
          =33m                                       =16

                     
Similar questions