Math, asked by shukladey9163, 3 months ago

multiple a²+a-3×2a²-a+5​

Answers

Answered by aman0509
3

Answer:

First take the like terms.

(a²×2a²)(a-a) (-3+5)

Now solve it :

=a²×2

Hence it is the answer.

thank you.

Answered by Anonymous
1

Answer:

We are trying to find a3−2a2−2a2−1a3a3−2a2−2a2−1a3 given that a−1a=2a−1a=2.</p><p></p><p>Some quick manipulation before we start that will help:</p><p></p><p>First, a−1a=2a−1a=2</p><p></p><p>Next,</p><p></p><p>(a−1a)2(a−1a)2</p><p></p><p>=a2−2(a)(1a)+1a2=a2−2(a)(1a)+1a2</p><p></p><p>=a2+1a2−2=a2+1a2−2</p><p></p><p>Another way of expressing the expression squared is(a−1a)2=22=4(a−1a)2=22=4</p><p></p><p>So a2+1a2=6a2+1a2=6. Remember this.</p><p></p><p>And:</p><p></p><p>(a−1a)3(a−1a)3</p><p></p><p>=a3−3(a2)(1a)+3(a)(1a2)−1a3=a3−3(a2)(1a)+3(a)(1a2)−1a3</p><p></p><p>=a3−3a+3a−1a3=a3−3a+3a−1a3</p><p></p><p>=a3−3(a−1a)−1a3=a3−3(a−1a)−1a3</p><p></p><p>=a3−1a3−6=a3−1a3−6</p><p></p><p>Similarly , we can also say that (a−1a)3=23=8(a−1a)3=23=8.</p><p></p><p>So (a−1a)3=14(a−1a)3=14</p><p></p><p>With that, our solution becomes easier.</p><p></p><p>a3−2a2−2a2−1a3a3−2a2−2a2−1a3</p><p></p><p>=(a3−1a3)−2(a2+1a2)=(a3−1a3)−2(a2+1a2)</p><p></p><p>=14−2(6)=14−2(6)</p><p></p><p>=2=2</p><p></p><p>Thanks </p><p></p><p>

Similar questions