Math, asked by aryan200516, 4 months ago

[MULTIPLE ANSWERS CAN BE CORRECT ]

Attachments:

Answers

Answered by LaeeqAhmed
1

x =  {13}^{ log_{k}(7) }

 \implies log_{7}( {13}^{ log_{k}7} )  +   log_{13} ({13}^{ log_{k}7 } ) = 1

  \blue{ \boxed{log( {a}^{m} )  = m. log(a) }}

 \implies  { log_{k}7}(log_{7}{13}) + { log_{k}7}(  log_{13}13) = 1

 \implies  log_{k}7( log_{7}13  +  log_{13}13 ) = 1

 \blue{ \boxed{ log_{a}(a)  = 1}}

 \implies log_{7}(13)  + 1 =  \frac{1}{ log_{k}(7) }

 \blue{ \boxed{ \frac{1}{ log_{b}(a) }=  log_{a}(b)   }}

  \orange{\therefore k = 91}

 \implies  log_{7}(13)  + 1 =  log_{7}(k)

 \implies  log_{7}(13)  -  log_{7}(k)  =  - 1

 \blue{ \boxed{ log(a)  -  log(b) =   log(\frac{a}{b} ) }}

 \implies  log_{7}( \frac{13}{k} )  =  - 1

 \tt \: if \:  \blue{ \boxed{ log_{a}(N) = x }} \:  \tt then :

  \blue{ \boxed{a^x=N}}

 \implies  {7}^{ - 1}  =  \frac{13}{k}

 \implies  \frac{1}{7}  =  \frac{13}{k}

 \implies k = 7 \times 13

 \orange{ \therefore k = 91}

Similar questions