Math, asked by gzone12312, 3 months ago

Multiple Choice ( Select 1 out of 4 options, for the
Apply Cramer's rule to solve the following equations
X + 3y + z = 2
3x - y +z = 9
X-4y + 2z = 7

Answers

Answered by MaheswariS
0

\textbf{Given:}

\mathsf{x+3y+z=2}

\mathsf{3x-y+z=9}

\mathsf{x-4y+2z=7}

\textbf{To find:}

\textsf{Solution of the given system of equations by Cramer's rule}

\textbf{Solution:}

\mathsf{\triangle=\left|\begin{array}{ccc}1&1&1\\4&2&1\\9&-3&1\end{array}\right|}

\mathsf{\triangle=1(2+3)-1(4-9)+1(-12-18)}

\mathsf{\triangle=5+5-30}

\mathsf{\triangle=-20}

\mathsf{{\triangle}_x=\left|\begin{array}{ccc}8&1&1\\11&2&1\\6&-3&1\end{array}\right|}

\mathsf{{\triangle}_x=8(2+3)-1(11-6)+1(-33-12)}

\mathsf{{\triangle}_x=40-5-45=-10}

\mathsf{{\triangle}_x=-10}

\mathsf{{\triangle}_y=\left|\begin{array}{ccc}1&8&1\\4&11&1\\9&6&1\end{array}\right|}

\mathsf{{\triangle}_y=1(11-6)-8(4-9)+1(24-99)}

\mathsf{{\triangle}_y=5+40-75}

\mathsf{{\triangle}_y=-30}

\mathsf{{\triangle}_z=\left|\begin{array}{ccc}1&1&8\\4&2&11\\9&-3&6\end{array}\right|}

\mathsf{{\triangle}_z=1(12+33)-1(24-99)+8(-12-18)}

\mathsf{{\triangle}_z=45+75-240}

\mathsf{{\triangle}_z=-120}

\textsf{By Cramer's rule}

\mathsf{x=\dfrac{\triangle_x}{\triangle}}

\mathsf{x=\dfrac{-10}{-20}=\dfrac{1}{2}}

\mathsf{y=\dfrac{\triangle_y}{\triangle}}

\mathsf{y=\dfrac{-30}{-20}=\dfrac{3}{2}}

\mathsf{z=\dfrac{\triangle_z}{\triangle}}

\mathsf{z=\dfrac{-120}{-20}=6}

\therefore\mathsf{The\;solution\;is\;x=\dfrac{1}{2},\;y=\dfrac{3}{2}\;and\;z=6}

Find more:

Solve using Cramer's Rule x+y+z=6; 3x+3y+z=12; 2x+3y+2z=14

https://brainly.in/question/29440020

Similar questions