Math, asked by Anonymous, 9 months ago

Multiple Correct Answer Type​

Attachments:

Answers

Answered by Anonymous
16

Question :

Consider a body of mass 1.0 kg at rest at the origin at t = 0. A force \sf{\vec F \: = \: (\alpha t \hat i \: + \: \beta \hat J)} is applied on the body. Where α = 1.0 N/s and β = 1.0 N. The torque acting on the body about the origin at time t = 0s is \vec \tau . Which of the following statements is (are) true ?

(1) | \tau | = ⅓ Nm

(2) The torque \tau is the direction of the unit vector \sf{+ \hat k} .

(3) The velocity of the body at t = 1s is \sf{\vec c \: = \: \dfrac{1}{2} \big( \hat i \: + \: 2 \hat j\big) } .

(4) The Magnitude of the displacement of the body at t = 1s is 1/6 m

___________________________

Answer :

(1) and (3) are the correct Statements

\rule{150}{0.5}

Explanation :

\mathfrak{Given} \begin{cases} \sf{Mass \: (m) \: = \: 1 \: kg} \\ \sf{\vec F \: = \: ( \alpha t \hat i \: + \: \beta \hat j)} \\ \sf{\alpha \: = \: 1.0 \: Ns^{-1}} \\ \sf{\beta \: = \: 1.0 \: N} \end{cases}

As we are given in question that :

\longrightarrow \sf{\vec F \: = \: (\alpha t \hat i \: + \: \beta \hat j) \: \: \: \: \: ...(1)}

Also, we know that the force is :

\longrightarrow \sf{\vec F \: = \: ma \: \: \: \: \: ...(2)}

Now, equate (1) and (2)

\longrightarrow \sf{ma \: = \: (\alpha t \hat i \: + \: \beta \hat j)} \\ \\ \longrightarrow \sf{a \: = \: 1 t \hat i \: + \: 1 \hat j} \\ \\ \longrightarrow {\boxed{\sf{a \: = \: (t \hat i \: + \:  \hat j) \: ms^{-2}}}}

________________________

Now,

\longrightarrow \sf{\dfrac{dv}{dt} \: = \: \alpha t \hat i \: + \: \beta \hat j} \\ \\ \longrightarrow \sf{dv \: = \: dt(t \hat i \: + \: \hat j)}

After integration we get,

\longrightarrow {\boxed{\sf{v \: = \: ( \dfrac{t^2}{2} \hat i \: + \: t \hat j) \: ms^{-1}}}}

_________________________

Now,

\longrightarrow \sf{\dfrac{dr}{dt} \: = \: \dfrac{t^2}{2} \hat i \: + \: t \hat j} \\ \\ \longrightarrow \sf{dr \: = \: dt(\dfrac{t^2}{2} \hat i \: + \: t \hat j)}

After Integration,

\longrightarrow \boxed{\sf{r \: = \: (\dfrac{t^3}{6} \hat i \: + \: \dfrac{t^2}{2} \hat j) \: m}}

_________________________

As we know that,

\boxed{\boxed{\sf{\tau \: = \: r \: \times \: F}}} \\ \\ \longrightarrow \sf{\tau \: = \: \big( \dfrac{t^3}{6} \hat i \: + \: \dfrac{t^2}{2} \hat j \big) \: \times \: \big(\alpha t \hat i \: + \: \beta \hat j \big) } \\ \\ \longrightarrow \sf{\tau \: = \: \big( \dfrac{t^3}{2} \: - \: \dfrac{t^3}{6} \big) ( \hat k)} \\ \\ \longrightarrow {\boxed{\sf{\tau \: = \: \bigg[ \dfrac{-t^3}{3}( \hat k) \bigg] \: Nm }}}

____________________________

When we put value of t = 1 for Torque.

We get \sf{\tau \: = \: \dfrac{1}{3} \: Nm}

And also when we put t = 1 in velocity

We get \sf{v \: = \: \dfrac{1}{2}  \big( \hat i \: + \: 2 \hat j \big)  \: ms^{-1}}


nirman95: Splendid ❤️
Answered by shadowsabers03
11

The force acting on the particle is,

\longrightarrow \vec F=\alpha t\,\hat i+\beta\,\^j

Since \alpha=1.0 and \beta=1.0,

\longrightarrow \vec F=t\,\hat i+\^j

But \vec F=m\vec a=\vec a, since m=1.0. Then,

\longrightarrow \vec a=t\,\hat i+\^j

\longrightarrow \dfrac{d\vec v}{dt}=t\,\hat i+\^j

\longrightarrow d\vec v=(t\,\hat i+\^j)\,dt

\displaystyle\longrightarrow \vec v=\int(t\,\hat i+\^j)\,dt

\displaystyle\longrightarrow \vec v=\dfrac{t^2}{2}\,\hat i+t\,\^j\quad\quad\dots(1)

Or,

\displaystyle\longrightarrow \vec v=\dfrac{1}{2}\left(t^2\,\hat i+2t\,\^j\right)

At t=1\ s,

\displaystyle\longrightarrow \vec v=\dfrac{1}{2}\left(1^2\,\hat i+2\times1\,\^j\right)

\displaystyle\longrightarrow \vec v=\dfrac{1}{2}\left(\hat i+2\,\^j\right)

From (1),

\displaystyle\longrightarrow \dfrac{d\vec r}{dt}=\dfrac{t^2}{2}\,\hat i+t\,\^j

\displaystyle\longrightarrow d\vec r=\left(\dfrac{t^2}{2}\,\hat i+t\,\^j\right)\,dt

\displaystyle\longrightarrow \vec r=\int\left(\dfrac{t^2}{2}\,\hat i+t\,\^j\right)\,dt

\displaystyle\longrightarrow \vec r=\dfrac{1}{2}\cdot\dfrac{t^3}{3}\,\hat i+\dfrac{t^2}{2}\,\^j\right)

\displaystyle\longrightarrow \vec r=\dfrac{t^3}{6}\,\hat i+\dfrac{t^2}{2}\,\^j\right)

This is the position vector as well as the displacement vector of the body, since the body was initially at rest at the origin.

\displaystyle\longrightarrow \vec s=\dfrac{t^3}{6}\,\hat i+\dfrac{t^2}{2}\,\^j\right)

At t=1\ s,

\displaystyle\longrightarrow \vec s=\dfrac{1}{6}\,\hat i+\dfrac{1}{2}\,\^j\right)

\displaystyle\longrightarrow|\vec s|=\sqrt{\left(\dfrac{1}{6}\right)^2+\left(\dfrac{1}{2}\right)^2}

\displaystyle\longrightarrow|\vec s|=\sqrt{\dfrac{5}{18}}\ m

So the torque acting on the particle is,

\displaystyle\longrightarrow \vec\tau=\vec r\times\vec F

\displaystyle\longrightarrow\vec\tau=\left(\dfrac{t^3}{6}\,\hat i+\dfrac{t^2}{2}\,\^j\right)\times\big(t\,\hat i+\^j\big)

\displaystyle\longrightarrow \vec\tau=\left|\begin{array}{ccc}\hat i&\^j&\^k\\&&\\\dfrac{t^3}{6}&\dfrac{t^2}{2}&0\\&&\\t&1&0\end{array}\right|

\displaystyle\longrightarrow \vec\tau=\left(\dfrac{t^3}{6}-\dfrac{t^3}{2}\right)\,\^k

\displaystyle\longrightarrow \vec\tau=-\dfrac{t^3}{3}\,\^k

But \vec\tau is actually the torque acting on the body at t=1.0\ s. Then,

\displaystyle\longrightarrow \vec\tau=-\dfrac{1^3}{3}\,\^k

\displaystyle\longrightarrow \vec\tau=-\dfrac{1}{3}\,\^k

\displaystyle\longrightarrow\left|\vec\tau\right|=\dfrac{1}{3}\ N\,m

Finally, we see that,

(1)   \displaystyle\left|\vec\tau\right|=\dfrac{1}{3}\ N\,m

(2)   The torque \vec\tau is in the direction of the unit vector -\^k.

(3)   The velocity of the body at t=1\ s is \displaystyle\vec v=\dfrac{1}{2}\left(\hat i+2\,\^j\right)\ m\,s^{-1}.

(4)   The magnitude of displacement of the body at t=1\ s is \sqrt{\dfrac{5}{18}}\ m.

Therefore, options (1) and (3) are correct.

Similar questions