Math, asked by rajputpradeep6970, 10 days ago

multiplicative inverse of 3+√4i ?

Answers

Answered by talpadadilip417
1

Step-by-step explanation:

\text{Given: \( 3+\sqrt{4} i \) }

\text{To find : THE MULTIPLICATIVE INVERSE OF \( 3+\sqrt{4} i \)}

\text{LET \( z=3+\sqrt{4} i \)}

\text{ \( WE KNOW THAT IF 2 IS A COMPLEXNO THEN THE MULTIPLICATIVE INVERSE IS Given BY }

\text{\(Z ^{-1}=\frac{\overline{2}}{|2|^{2}} \)}

\begin{aligned} \therefore H & \forall R \in \quad z=3+i \sqrt{7} \\ \bar{z}=3-i \sqrt{7} &|2|^{2}=(3)^{2}+(\sqrt{4})^{2} \\|Z|^{2}=& 9+4=13 \end{aligned}

 \therefore MULTIPLICATIVE INVERSE OF 3+\sqrt{7} i is Given BY z^{-1}=\frac{3-\sqrt{4} i}{13}

=\frac{3}{13}-\frac{\sqrt{7}}{13} i HENCE THE MULTIPLICATIVE INVERSE OF 3+\sqrt{4} i is \frac{3}{13}-\frac{\sqrt{4}}{13} i

Similar questions