Math, asked by aleeshachristopher76, 7 months ago

multiplicative inverse of
root 5+2i /1- 2i​
plz send the answer fast
l want to submit it now

Answers

Answered by MaheswariS
0

\underline{\textsf{Given:}}

\dfrac{\sqrt{5}+2\,i}{1-2\,i}

\underline{\textsf{To find:}}

\textsf{Multiplicative inverse of $\dfrac{\sqrt{5}+2\,i}{1-2\,i}$}

\underline{\textsf{Solution:}}

\textsf{We know that,}

\textsf{The multiplicative inverse of $z=a+b\,i$ is $z^{-1}=\dfrac{1}{a+b\,i}$}

\textsf{Let}\;z=\dfrac{\sqrt{5}+2\,i}{1-2\,i}

\textsf{The multiplicative inverse of z}

=\dfrac{1}{\frac{\sqrt{5}+2\,i}{1-2\,i}}

=\dfrac{1-2\,i}{\sqrt{5}+2\,i}

\textsf{To make it into standard form}

\textsf{multiply both numerator and denominator by $\sqrt{5}-2\,ii$}

=\dfrac{1-2\,i}{\sqrt{5}+2\,i}{\times}\dfrac{\sqrt{5}-2\,i}{\sqrt{5}-2\,i}

=\dfrac{(\sqrt{5}-2\,i)(1-2\,i)}{{\sqrt{5}}^2-2^2i^2}

=\dfrac{\sqrt{5}-2\sqrt{5}i-2i+4i^2}{5-4(-1)}

=\dfrac{\sqrt{5}-2\sqrt{5}i-2i+4(-1)}{9}

=\dfrac{\sqrt{5}-2\sqrt{5}i-2i-4}{9}

=\dfrac{(\sqrt{5}-4)+(-2\sqrt{5}-2)i}{9}

\underline{\textsf{Answer:}}

\textsf{The multiplicative inverse of $\bf\dfrac{5+2\,i}{1-2\,i}$ is $\bf\dfrac{(\sqrt{5}-4)+(-2\sqrt{5}-2)i}{9}$}

Find more:

If a-bi/a+bi=1+i/1-i then,prove a+b=0

https://brainly.in/question/14173316

Express the complex number z = 5+i/2+3i in the form a + ib

https://brainly.in/question/6695271

Find the square root of -12+6i

https://brainly.in/question/17692861

Answered by hukam0685
0

Step-by-step explanation:

Given:

z =  \frac{ \sqrt{5}  + 2i}{1 - 2i}  \\

To find: Multiplicative Inverse of z

Solution:

We know that multiplicative inverse of a/b is b/a

So,

multiplicative inverse of z is 1/z

 =  \frac{1 - 2i}{ \sqrt{5} + 2i }  \\  \\

Multiply and divide by complex conjugate of denominator

 =  \frac{1 - 2i}{ \sqrt{5}  + 2i}  \times  \frac{ \sqrt{5} - 2i }{ \sqrt{5} - 2i }  \\  \\  =  \frac{(1 - 2i)( \sqrt{5}  - 2i)}{( \sqrt{5})^{2} + ( {2)}^{2}   }  \\  \\  =  \frac{ \sqrt{5} - 2i - 2 \sqrt{5}i - 4  }{5 +4}  \\  \\  \because \:  {i}^{2}  =  - 1 \\  \\  =  \frac{ \sqrt{5} - 4 - 2i (1 +  \sqrt{5} )}{9}  \\  \\  = \frac{ \sqrt{5}  - 4}{9} -i\frac{ 2(1 +  \sqrt{5} )}{9}

Thus,

\bold{\frac{ \sqrt{5}  - 4}{9} -i\frac{ 2(1 +  \sqrt{5} )}{9} }\\

is the multiplicative inverse of Z.

Hope it helps you.

To learn more on brainly:

1)Find the multiplicative inverse of 1/(4-3i)

https://brainly.in/question/5881172

2)Solve the given quadratic equation:

x² + 3ix + 10 = 0

https://brainly.in/question/7853683

Similar questions