Math, asked by adityasainityyy27, 8 months ago

Multiply 2/3x³y³ by (3x-15y) and verify the result for x= 2, y= -1 proper solution​

Answers

Answered by Rohith200422
8

Question:

Multiply:-

 \frac{ \frac{2}{3} {x}^{3}   {y}^{3} }{3x - 15y}

and verify the result for x = 2, y = -1.

To find:

★ To find the value of the given expression.

Answer:

\underline{ \: { \pink{ \frac{ - 16}{63} }} \: } \: is \: the \: value.

Given:

★ An expression is given.

Step-by-step explanation:

 \frac{ \frac{2}{3} {x}^{3}   {y}^{3} }{3x - 15y}

\implies  \frac{2 \times  {x}^{3} \times  {y}^{3}  }{3(3x - 15y)}

\implies  \frac{2 {x}^{3} {y}^{3}  }{9x - 45y}

Now substituting the values,

\implies  \frac{2 \times  {(2)}^{3}  \times {( - 1)}^{3}  }{9(2) - 45( - 1)}

\implies  \frac{2 \times 8 \times  - 1}{18 + 45}

\implies   \boxed{ \bold{ \frac{ - 16}{63} }}

Verification:

 \frac{ \frac{2}{3} {x}^{3}   {y}^{3} }{3x - 15y}

\implies  \frac{ \frac{2}{3} \times  {(2)}^{3} \times  {( - 1)}^{3}   }{3(2) - 15( - 1)}

\implies  \frac{ \frac{2 \times 8 \times  - 1}{3} }{6 + 15}

\implies  \frac{ - 16}{3(6 + 15)}

\implies  \frac{ - 16}{18 + 45}

\implies  \boxed{ \frac{ - 16}{63} }

Hence verified.

Similar questions