Multiply 6x^3 - y + 3x^2y by x^2+y^2
Answers
Answer:
3x^2y^3+6x^3y^2+3x^4y+6x^5-y^3-x^2y
Step-by-step explanation:
(6x^3 - y + 3x^2y)(x^2+y^2)
it's just multiplying everything by x^2 and y^2 and then adding them it will take too long to write out.
On multiplying (x² + y²) × (6x³ - y + 3x²y) we get
6x⁵-x²y + 3x⁴y + 6x³y² - y³ + 3x²y³
Given:
6x³ - y + 3x²y and x²+ y²
To find:
Multiply 6x³ - y + 3x²y and x²+ y²
Solution:
Formula used:
By the distributive property of multiplication
A(B + C) = AB + AC
Using the above formula
(x² + y²) × [6x³ - y + 3x²y]
=> (x²) × [6x³ - y + 3x²y] + (y²) × [6x³ - y + 3x²y]
Now simplify the above expression as follows
=> (x²) × [6x³ - y + 3x²y] = 6x⁵ - x²y + 3x⁴y
=> (y²) × [6x³ - y + 3x²y] = 6x³y² - y³ + 3x²y³
=> (x² + y²) × [6x³ - y + 3x²y]
= 6x⁵ - x²y + 3x⁴y + 6x³y² - y³ + 3x²y³
Therefore,
On multiplying (x² + y²) × (6x³ - y + 3x²y) we get
6x⁵-x²y + 3x⁴y + 6x³y² - y³ + 3x²y³
Learn more at
https://brainly.in/question/1112571
#SPJ6