Math, asked by shubhamk7423, 11 months ago

Muu paldmeter.
Solve (D2 - 2D + 1)y = cos3x.​

Answers

Answered by guptasingh4564
8

Therefore the Answer is GE=(A+Bx)e^{x} +\frac{3x^{2}e^{x}  }{4} +\frac{3e^{-x} }{8}

Step-by-step explanation:

Given;

Differential equation is (D^{2} -2D+1)y=cos3x

The auxiliary equation is

m^{2} -2m+1=0

Also write;

m^{2} -2\times m \times 1+1^{2} =0

(m-1)^{2} =0   ( ∵ a^{2} -2ab+b^{2} =(a-b)^{2} )

m=1,1  

The root are real and equal.

So the complementary function is

CF=(A+Bx)e^{x}

Particular  Integral,

f(x)=e^{ax+b}

Now we have to find the particular integral,

PI=\frac{cos3x}{D^{2}-2D+1 }=\frac{3(e^{x} +e^{-x} )}{2(D^{2}-2D+1) }=PI_{1} +PI_{2}

Now,

PI_{1} =\frac{3e^{x} }{2(D^{2}-2D+1) }

Plug D=1 in above equation,

PI_{1} =\frac{3e^{x} }{2(1^{2}-2\times1+1) } = undefined

PI_{1} =\frac{3x^{2} e^{x} }{4}

Similarly,

PI_{2}= \frac{3e^{-x} }{2((-1)^{2}-(2\times-1)+1) }=\frac{3e^{-x} }{8}    ( By substituting D=-1 )

Now the general solution is,

GE=CF+PI_{1} +PI_{2}

∴  GE=(A+Bx)e^{x} +\frac{3x^{2}e^{x}  }{4} +\frac{3e^{-x} }{8}

So the Answer is GE=(A+Bx)e^{x} +\frac{3x^{2}e^{x}  }{4} +\frac{3e^{-x} }{8}

Answered by koushikm3009
0

Answer:

Step-by-step explanation:

Similar questions