Math, asked by heisnamnaobu798, 2 months ago

my father age 5 years ago plus twice my age now gives 65 . My age 5 years ago plus three times my father age now gives 130 . what is my father age​

Answers

Answered by TheBrainlistUser
73

Let Father's age be x and son's age be y.

Father's age 5 years ago = x - 5

Son's age 5 years ago = y - 5

By first condition,

\sf\implies{(x - 5) + 2y = 65} \:  \\\sf\implies{x + 2y = 70 \:  \:  \: ...(1)}

By second condition,

\sf\implies{(y  - 5) + 3x = 130}  \: \\ \sf\implies{3x + y = 135 \:  \:  \: ...(2)}

By equation (1)

\sf\implies{x + 2y = 70} \\ \sf\implies{x + y =  \frac{70}{2} } \:  \\ \sf\implies{y = 35 - x} \:  \:

Putting y = 35 - x in equation (2)

\sf\implies{3x + (35 - x) =135 } \\ \sf\implies{3x - x = 135 - 35} \:  \:  \:   \\ \sf\implies{2x = 100} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\ \sf\implies{x =  \frac{100}{2}  } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\ \sf\implies{x = 50} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

{\underline{\boxed{\sf{\red{x = 50 }}}}}

Putting x = 50 in equation (1)

\sf\implies{50+ 2y = 70} \\ \sf\implies{2y = 70 -50 } \\ \sf\implies{2y = 20} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \\ \sf\implies{y =  \frac{20}{2} = 10 }

{\large{\underline{\boxed{\sf{\red{y = 10 }}}}}}

Hence, Father's age is 50 years.

_____________________________________

Answered by hansikanagle
10

Answer:

father age is 50 years

so always ask my answer

Attachments:
Similar questions