my father's age 5 years ago plus twice my age 5 years ago plus three times my father's age now gives 130. what is my father's age?
Answers
Answer:
Let Father's age be x and son's age be y.
Father's age 5 years ago = x - 5
Son's age 5 years ago = y - 5
By first condition,
\begin{gathered}\sf\implies{(x - 5) + 2y = 65} \: \\\sf\implies{x + 2y = 70 \: \: \: ...(1)} \end{gathered}
⟹(x−5)+2y=65
⟹x+2y=70...(1)
By second condition,
\begin{gathered}\sf\implies{(y - 5) + 3x = 130} \: \\ \sf\implies{3x + y = 135 \: \: \: ...(2)}\end{gathered}
⟹(y−5)+3x=130
⟹3x+y=135...(2)
By equation (1)
\begin{gathered}\sf\implies{x + 2y = 70} \\ \sf\implies{x + y = \frac{70}{2} } \: \\ \sf\implies{y = 35 - x} \: \: \end{gathered}
⟹x+2y=70
⟹x+y=
2
70
⟹y=35−x
Putting y = 35 - x in equation (2)
\begin{gathered}\sf\implies{3x + (35 - x) =135 } \\ \sf\implies{3x - x = 135 - 35} \: \: \: \\ \sf\implies{2x = 100} \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \\ \sf\implies{x = \frac{100}{2} } \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \\ \sf\implies{x = 50} \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \end{gathered}
⟹3x+(35−x)=135
⟹3x−x=135−35
⟹2x=100
⟹x=
2
100
⟹x=50
{\underline{\boxed{\sf{\red{x = 50 }}}}}
x=50
Putting x = 50 in equation (1)
\begin{gathered}\sf\implies{50+ 2y = 70} \\ \sf\implies{2y = 70 -50 } \\ \sf\implies{2y = 20} \: \: \: \: \: \: \: \: \: \: \\ \sf\implies{y = \frac{20}{2} = 10 }\end{gathered}
⟹50+2y=70
⟹2y=70−50
⟹2y=20
⟹y=
2
20
=10
{\large{\underline{\boxed{\sf{\red{y = 10 }}}}}}
y=10
Hence, Father's age is 50 years.
Step-by-step explanation:
mark me as a brainliest.