Math, asked by bithi7571, 6 months ago

My question is about the limit

Answers

Answered by Anonymous
13

 \bull  \:  \:  \:  \:  \:  \: \bf \LARGE{Question :} \\  \\  \to \:  \large{ \sf{What \:  Is \:  Limit  \: ? }} \\ \\  \\  \bull\: \bf \:  \:  \:  \:  \:  \:  \:  \:  \LARGE{ Answer  :} \\  \\   \boxed{} \:   \large{\sf \: We \:  need  \: know \:  to \:  know \:  behavior  \: of  \: a \:  function. } \\  \sf \large{ And \:  the \:  concept  \: of \:  limit \:  helps  \: to \:  do  \: so. } \\  \\  \sf \large \: \boxed{ } \:  \:  For  \: some \:  functional \:  expressional \:  it  \:  \\ \sf \large became \:  heard  \: to \:  say \:  the \:  properties \:  of  \: it.  \\  \sf \large \: {Like \:  exponential  \: function.}  \\  { \sf \large \: Then \:  we  \: use  \: the \:  concept  \: of  \: limit  \: to \:  identify \:  it's  \: properties. } \\  \\  \\  \\  \sf  \underline{\Large{example : }} \\   \sf \: f(x) = \frac{ {x}^{2} - 4 }{ x - 2 }  \\  \sf \: This \:  function \:  is  \: undefined \:  at \:  x=2 \\  \\  \sf \: In \:  this \:   case  \: we  \: use  \: Limit \:  to  \\  \sf\: observe  \: the  \: neighborhood  \: of \:  the \:  function \:  at\: x\longrightarrow 2^{+} \: or  \: \: 2^{ - }

________________________________________________________________

HAVE A GREAT DAY...

Similar questions