my question sole it and with statement
Attachments:
Answers
Answered by
0
Answer:
Here"s your answer
Step-by-step explanation:
[tex] (cotA+secB)^{2}-(tanB-cosecA)^{2}\\
=cot^{2}A+sec^{2}B +2cotAsecB-tan^{2}B-cosec^{2}A+2tanBcosecA\\
=cot^{2}A-cosec^{2}A+sec^{2}B-tan^{2}B+2(cotAsecB+tanBcosecA)\\
=-1+1+2(cotAsecB+tanBcosecA) \: since\:sec^{2}B-tan^{2}B=1\:cosec^{2}A-cot^{2}A=1\\
=2(cotAsecB+tanBcosecA) \\
Hence\:Proved[\tex]
Hope it helps
Similar questions