Math, asked by tarikshamsababa, 6 months ago

N=2p-3, p€n and n² ÷ 4 =?

Answers

Answered by edwinmanuel6002
7

Step-by-step explanation:

P(1) is true since

1 · 2

2

2

=

2

2

= 1 = 13

.

(c) The inductive hypothesis is P(n):

1

3 + 23 + . . . + n

3 =

n(n + 1)

2

2

.

(d) Assuming the inductive hypothesis, we aim to show P(n + 1):

1

3 + 23 + . . . + n

3 + (n + 1)3 =

(n + 1)(n + 2)

2

2

.

(e) Suppose n is such that

1

3 + 23 + . . . + n

3 =

n(n + 1)

2

2

.

Then by our inductive hypothesis, we have

1

3 + . . . + n

3 + (n + 1)3 =

n(n + 1)

2

2

+ (n + 1)3

.

Now we compute

n(n + 1)

2

2

+ (n + 1)3 =

n

2

(n + 1)2

4

+ (n + 1)3

=

n

2

(n + 1)2

4

+

4(n + 1)3

4

=

(n

2 + 4(n + 1))(n + 1)2

4

=

(n

2 + 4n + 4)(n + 1)2

4

=

(n + 2)2

(n + 1)2

4

=

(n + 1)(n + 2)

2

2

.

This shows

1

3 + 23 + . . . + (n + 1)3 =

(n + 1)(n + 2)

2

2

.

(f) We showed P(1) and (∀n)(P(n) → P(n + 1)) by universal generalization. It follows by mathematical induction that

(∀n)P(n).

Exercise 1.2. 10

Proof. Notice we have

1

1 · 2

=

1

2

1

1 · 2

+

1

2 · 3

=

3

2 · 3

+

1

2 · 3

=

4

6

=

2

3

1

1 · 2

+

1

2 · 3

+

1

3 · 4

=

3 · 4

2 · 3 · 4

+

4

2 · 3 · 4

+

2

2 · 3 · 4

=

18

24

=

3

4

.

Similar questions