n^3-3n^2+2n-1320=0 find n=?......answer the question step by step detailly,I'll mark it as brainliest
Answers
Answered by
5
Given : n³ - 3n² + 2n - 1320 = 0
⇒ n³ - 12n² + 9n² - 108n + 110n - 1320 = 0
⇒ n³ + 9n² + 110n - 12n² - 108n - 1320 = 0
⇒ n(n² + 9n + 110) - 12(n² + 9n + 110) = 0
⇒ (n - 12)(n² + 9n + 110) = 0
(i)
n - 12 = 0
n = 12
(ii)
n² + 9n + 110 = 0
Here, a = 1, b = 9, c = 110
d = b² - 4ac
= 81 - 440
= -359
Now,
n = (-b ± √D)/2a
= (-9 ± √359)/2
= (-9 ± i√359)/2
Therefore, the values are:
=> n = 12, (-9/2) + (i√359/2), (-9/2) - (i√359)/2
Hope it helps!
Answered by
1
Answer:
(-13 ± √359 i) ÷ 2 , 10
Step-by-step explanation:
n^3+3n^2+2n-1320=0
n³ +3n² + 2n -1320=0
n = 10
( n - 10) ( n² + 13n + 132 ) = 0
n² + 13n + 132 = 0
n = -13 ± √169 - 528 ÷ 2
n = (-13 ± √359 i) ÷ 2 , 10
Similar questions