Math, asked by Anonymous, 4 months ago

(n-5²) - 6n (n-5){factories it}​

Answers

Answered by Anonymous
19

Q) (4a^2-9b^2)-(4a^2-9b^2)^2

\huge\underline\mathbb\red{explanation}

(4 {a}^{2}  - 9 {b}^{2}) -(4 {a}^{2}  - 9 {b}^{2} ) ^{2} \\  \\ (2a) ^{2}  - (3b) ^{2}   -  ((2a) ^{2}  - (3b) ^{2} ) ^{2}  \\  \\ (2a + 3b)(2a - 3b) - (2a + 3b) ^{2} (2a - 3b)  ^{2}  \\  \\ taking \: common \\  \\  (2a + 3b)(2a - 3b) (1 - (2a + 3b)^2) \\ \\ (4 {a}^{2}  - 9b ^{2} ) (1 - 4a^2+6ab+9^2 ) \: done

FORMULA USED-:!

A^2-B^2= (A+B)(A-B).

(a+b)^2=a^2+2ab+b^2.

\sf\large\underline\purple{@tauhid42}

Answered by yogeshsvasu
8

Step-by-step explanation:

(n - 5 {}^{2}) - 6n(n - 5) = 0

(n - 25) - 6n {}^{2}  + 30n = 0

n - 25 - 6n {}^{2} + 30n = 0

 - 6n {}^{2}  + 31n - 25 = 0

6n {}^{2}  - 31n + 25 = 0

6n {}^{2}  - 6n - 25n + 25 = 0

6n(n - 1) - 25(n - 1) = 0

(n - 1)(6n - 25) = 0

n = 1 or n = 25/6

Similar questions